Claudia Ferroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5930101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: Effective photoinduced in vitro killing of osteosarcoma. Journal of Controlled Release, 2013, 168, 225-237.	4.8	81
2	Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry, 2015, 102, 530-539.	2.6	78
3	A New Avenue toward Androgen Receptor Pan-antagonists: C2 Sterically Hindered Substitution of Hydroxy-propanamides. Journal of Medicinal Chemistry, 2014, 57, 7263-7279.	2.9	53
4	Keratin-hydrotalcites hybrid films for drug delivery applications. European Polymer Journal, 2018, 105, 177-185.	2.6	50
5	Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity. Materials Science and Engineering C, 2018, 90, 476-484.	3.8	48
6	1,4-Substituted Triazoles as Nonsteroidal Anti-Androgens for Prostate Cancer Treatment. Journal of Medicinal Chemistry, 2017, 60, 3082-3093.	2.9	44
7	Noncovalent Functionalization of 2D Black Phosphorus with Fluorescent Boronic Derivatives of Pyrene for Probing and Modulating the Interaction with Molecular Oxygen. ACS Applied Materials & Interfaces, 2019, 11, 22637-22647.	4.0	42
8	Functionalized Keratin as Nanotechnology-Based Drug Delivery System for the Pharmacological Treatment of Osteosarcoma. International Journal of Molecular Sciences, 2018, 19, 3670.	1.8	34
9	Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. International Journal of Nanomedicine, 2018, Volume 13, 4847-4867.	3.3	33
10	Androgen Receptor Targeted Conjugate for Bimodal Photodynamic Therapy of Prostate Cancer in Vitro. Bioconjugate Chemistry, 2015, 26, 1662-1671.	1.8	29
11	Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends. Future Medicinal Chemistry, 2019, 11, 901-921.	1.1	29
12	Chlorin e6 keratin nanoparticles for photodynamic anticancer therapy. RSC Advances, 2016, 6, 33910-33918.	1.7	27
13	Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Materials and Design, 2016, 110, 475-484.	3.3	27
14	Keratin nanoparticles co-delivering Docetaxel and Chlorin e6 promote synergic interaction between chemo- and photo-dynamic therapies. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111598.	1.7	27
15	Light-Induced Therapies for Prostate Cancer Treatment. Frontiers in Chemistry, 2019, 7, 719.	1.8	26
16	Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2018, 186, 169-177.	1.7	22
17	Wool Keratin 3D Scaffolds with Light-Triggered Antimicrobial Activity. Biomacromolecules, 2016, 17, 2882-2890.	2.6	21
18	Keratin-Based Nanoparticles as Drug Delivery Carriers. Applied Sciences (Switzerland), 2021, 11, 9417.	1.3	21

Claudia Ferroni

#	Article	IF	CITATIONS
19	A photodynamic bifunctional conjugate for prostate cancer: an in vitro mechanistic study. Investigational New Drugs, 2017, 35, 115-123.	1.2	16
20	TPPS supported on core–shell PMMA nanoparticles: the development of continuous-flow membrane-mediated electrocoagulation as a photocatalyst processing method in aqueous media. Green Chemistry, 2015, 17, 1907-1917.	4.6	15
21	Unprecedented Behavior of (9 <i>R</i>)-9-Hydroxystearic Acid-Loaded Keratin Nanoparticles on Cancer Cell Cycle. Molecular Pharmaceutics, 2019, 16, 931-942.	2.3	14
22	Elucidating new structural features of the triazole scaffold for the development of mPGES-1 inhibitors. MedChemComm, 2015, 6, 75-79.	3.5	12
23	Nitric Oxide Photo-Donor Hybrids of Ciprofloxacin and Norfloxacin: A Shift in Activity from Antimicrobial to Anticancer Agents. Journal of Medicinal Chemistry, 2021, 64, 11597-11613.	2.9	12
24	Mild and Effective Polymerization of Dopamine on Keratin Films for Innovative Photoactivable and Biocompatible Coated Materials. Macromolecular Materials and Engineering, 2018, 303, 1700653.	1.7	10
25	Development of a food class-discrimination system by non-targeted NMR analyses using different magnetic field strengths. Food Chemistry, 2020, 332, 127339.	4.2	9
26	Pheophorbide A and Paclitaxel Bioresponsive Nanoparticles as Double-Punch Platform for Cancer Therapy. Pharmaceutics, 2021, 13, 1130.	2.0	9
27	Intercalation of Bioactive Molecules into Nanosized ZnAl Hydrotalcites for Combined Chemo and Photo Cancer Treatment. ACS Applied Nano Materials, 2018, 1, 6387-6397.	2.4	8
28	Keratin nanoparticles and photodynamic therapy enhance the anticancer stem cells activity of salinomycin. Materials Science and Engineering C, 2021, 122, 111899.	3.8	8
29	Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Current Medicinal Chemistry, 2019, 26, 6053-6073.	1.2	7
30	HSA-Binding Prodrugs-Based Nanoparticles Endowed with Chemo and Photo-Toxicity against Breast Cancers, 2022, 14, 877.	1.7	7
31	Two Beats One: Osteosarcoma Therapy with Light-Activated and Chemo-Releasing Keratin Nanoformulation in a Preclinical Mouse Model. Pharmaceutics, 2022, 14, 677.	2.0	7
32	Camptothecin and Thiocamptothecin: the Role of Sulfur in Shifting the Hydrolysis Equilibrium towards the Closed Lactone Form. ChemMedChem, 2011, 6, 1706-1714.	1.6	6
33	Polyenylcyclopropane carboxylic esters with high insecticidal activity. Pest Management Science, 2015, 71, 728-736.	1.7	4
34	Highlights of the Fifth International Workshop on Nitric Oxide and Cancer. Critical Reviews in Oncogenesis, 2016, 21, 309-324.	0.2	1
35	A Glance at Drug Delivery Systems and Emerging Immunotherapeutic Strategies for the Treatment of Glioblastoma. Frontiers in Clinical Drug Research Anti-cancer Agents, 2021, , 37-81.	0.2	0