Michal Feckan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5929875/michal-feckan-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

283
papers

2,763
citations

25
h-index

317
ext. papers

2,763
1.5
6.07
ext. citations

2,763
h-index

42
g-index

L-index

#	Paper	IF	Citations
283	Constant vorticity atmospheric Ekman flows in the \$ f- \$plane approximation. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2022 ,	1.3	
282	On the Stability of Linear Quaternion-Valued Differential Equations. <i>Qualitative Theory of Dynamical Systems</i> , 2022 , 21, 1	0.8	2
281	Exact solution and instability for geophysical edge waves. <i>Communications on Pure and Applied Analysis</i> , 2022 ,	1.9	1
280	g-Expectation for Conformable Backward Stochastic Differential Equations. Axioms, 2022, 11, 75	1.6	1
279	Synchronization of Fractional Stochastic Chaotic Systems via Mittag-Leffler Function. <i>Fractal and Fractional</i> , 2022 , 6, 192	3	О
278	Controllability Results for First Order Linear Fuzzy Differential Systems. <i>Mathematics</i> , 2022 , 10, 1193	2.3	Ο
277	Exact Solvability Conditions for the Non-Local Initial Value Problem for Systems of Linear Fractional Functional Differential Equations. <i>Mathematics</i> , 2022 , 10, 1759	2.3	O
276	On the existence and Ulam-Hyers stability of a new class of partial (III) fractional differential equations with impulses. <i>Filomat</i> , 2021 , 35, 1977-1991	0.7	1
275	Forecasting Economic Growth of the Group of Seven via Fractional-Order Gradient Descent Approach. <i>Axioms</i> , 2021 , 10, 257	1.6	1
274	Periodic Solutions in Slowly Varying Discontinuous Differential Equations: The Generic Case. <i>Mathematics</i> , 2021 , 9, 2449	2.3	1
273	Periodic boundary value problem for second-order differential equations from geophysical fluid flows. <i>Monatshefte Fur Mathematik</i> , 2021 , 195, 523-540	0.7	3
272	Quaternion-Valued Linear Impulsive Differential Equations. <i>Qualitative Theory of Dynamical Systems</i> , 2021 , 20, 1	0.8	6
271	Relative controllability of delay multi-agent systems. <i>International Journal of Robust and Nonlinear Control</i> , 2021 , 31, 4965-4993	3.6	1
270	Applying fractional calculus to analyze final consumption and gross investment influence on GDP. <i>Journal of Applied Mathematics, Statistics and Informatics</i> , 2021 , 17, 65-72	0.1	1
269	Attractor as a convex combination of a set of attractors. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2021 , 96, 105721	3.7	O
268	The Clariu-Radu Method for Existence, Uniqueness and Gauss Hypergeometric Stability of EHilfer Fractional Differential Equations. <i>Mathematics</i> , 2021 , 9, 1408	2.3	4
267	Analytic Invariant Curves for an Iterative Equation Related to Ricker-type Second-order Equation. <i>Acta Mathematica Sinica, English Series</i> , 2021 , 37, 1041-1052	0.6	

(2020-2021)

266	Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations. <i>Applied Mathematics Letters</i> , 2021 , 113, 106886	3.5	3	
265	Consensus Problems of Linear Multi-agent Systems involving Conformable Derivative. <i>Applied Mathematics and Computation</i> , 2021 , 394, 125809	2.7	1	
264	A new approach to study constant vorticity water flows in the \$beta\$-plane approximation with centripetal forces. <i>Dynamics of Partial Differential Equations</i> , 2021 , 18, 199-210	0.8	3	
263	On the nonlocal boundary value problem of geophysical fluid flows. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2021 , 72, 1	1.6	5	
262	$\$ (omega,mathbb{T}) $\$ -periodic solutions of impulsive evolution equations. <i>Evolution Equations and Control Theory</i> , 2021 ,	2	3	
261	Explicit solution and dynamical properties of atmospheric Ekman flows with boundary conditions. <i>Electronic Journal of Qualitative Theory of Differential Equations</i> , 2021 , 1-19	0.5	4	
260	Iterative learning control for multi-agent systems with impulsive consensus tracking. <i>Nonlinear Analysis: Modelling and Control</i> , 2021 , 26, 130-150	1.3	3	
259	Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. <i>Discrete and Continuous Dynamical Systems</i> , 2021 , 41, 1157-1176	2	11	
258	Existence and uniqueness results for modeling jet flow of the antarctic circumpolar current. <i>Monatshefte Fur Mathematik</i> , 2021 , 194, 601-621	0.7	2	
257	On the relative controllability of neutral delay differential equations. <i>Journal of Mathematical Physics</i> , 2021 , 62, 082704	1.2	О	
256	Constant Vorticity Ekman Flows in the (beta)-Plane Approximation. <i>Journal of Mathematical Fluid Mechanics</i> , 2021 , 23, 1	1.4	1	
255	Coupled Discrete Fractional-Order Logistic Maps. <i>Mathematics</i> , 2021 , 9, 2204	2.3	2	
254	Faedo-Galerkin approximation of mild solutions of fractional functional differential equations. <i>Nonautonomous Dynamical Systems</i> , 2021 , 8, 1-17	0.7	3	
253	D-Stability of the Initial Value Problem for Symmetric Nonlinear Functional Differential Equations. <i>Symmetry</i> , 2020 , 12, 1761	2.7	O	
252	A Fixed-Point Approach to the HyersDlam Stability of CaputoBabrizio Fractional Differential Equations. <i>Mathematics</i> , 2020 , 8, 647	2.3	9	
251	Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows. <i>Monatshefte Fur Mathematik</i> , 2020 , 193, 623-636	0.7	6	
250	Hyers Dlam Stability and Existence of Solutions to the Generalized Liouville Daputo Fractional Differential Equations. <i>Symmetry</i> , 2020 , 12, 955	2.7	4	
249	Iterative learning control for nonlinear differential inclusion systems. <i>International Journal of Robust and Nonlinear Control</i> , 2020 , 30, 2937-2952	3.6	2	

248	Chaos Suppression in a Gompertz-like Discrete System of Fractional Order. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2020 , 30, 2050049	2	2
247	Averaging Methods for Second-Order Differential Equations and Their Application for Impact Systems. <i>Mathematics</i> , 2020 , 8, 916	2.3	1
246	Null controllability results for stochastic delay systems with delayed perturbation of matrices. <i>Chaos, Solitons and Fractals</i> , 2020 , 138, 109927	9.3	10
245	Controllability of linear and nonlinear systems governed by Stieltjes differential equations. <i>Applied Mathematics and Computation</i> , 2020 , 376, 125139	2.7	2
244	Existence and uniqueness results for a second order differential equation for the ocean flow in arctic gyres. <i>Monatshefte Fur Mathematik</i> , 2020 , 193, 177-192	0.7	6
243	BP Neural Network Calculus in Economic Growth Modelling of the Group of Seven. <i>Mathematics</i> , 2020 , 8, 37	2.3	4
242	On the Exponents of Exponential Dichotomies. <i>Mathematics</i> , 2020 , 8, 651	2.3	1
241	Synchronization of Butterfly Fractional Order Chaotic System. <i>Mathematics</i> , 2020 , 8, 446	2.3	9
240	Boundedness, periodicity, and conditional stability of noninstantaneous impulsive evolution equations. <i>Mathematical Methods in the Applied Sciences</i> , 2020 , 43, 5905-5926	2.3	4
239	Controllability of conformable differential systems. <i>Nonlinear Analysis: Modelling and Control</i> , 2020 , 25,	1.3	5
238	Existence and uniqueness of ([t])-periodic solutions of semilinear evolution equations. <i>International Journal of Dynamical Systems and Differential Equations</i> , 2020 , 10, 149	0.4	2
237	Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity. <i>Comptes Rendus Mathematique</i> , 2020 , 358, 341-364	0.4	2
236	Qualitative Analysis of Multi-Terms Fractional Order Delay Differential Equations via the Topological Degree Theory. <i>Mathematics</i> , 2020 , 8, 218	2.3	20
235	Periodic mild solutions of impulsive fractional evolution equations. <i>AIMS Mathematics</i> , 2020 , 5, 497-506	2.2	4
234	Note on Periodic and Asymptotically Periodic Solutions of Fractional Differential Equations. <i>Studies in Systems, Decision and Control</i> , 2020 , 153-185	0.8	3
233	On the PoincarFAdronov-Melnikov method for the existence of grazing impact periodic solutions of differential equations. <i>Journal of Differential Equations</i> , 2020 , 268, 3725-3748	2.1	6
232	Robustness for linear evolution equations with non-instantaneous impulsive effects. <i>Bulletin Des Sciences Mathematiques</i> , 2020 , 159, 102827	0.7	7
231	Positive solutions to integral boundary value problems from geophysical fluid flows. <i>Monatshefte Fur Mathematik</i> , 2020 , 193, 901-925	0.7	6

230	General Melnikov Approach to Implicit ODES. Journal of Dynamics and Differential Equations, 2020, 1	1.3	1
229	A New Class of ((omega ,c))-Periodic Non-instantaneous Impulsive Differential Equations. <i>Mediterranean Journal of Mathematics</i> , 2020 , 17, 1	0.9	5
228	Relative controllability of fractional delay differential equations via delayed perturbation of Mittag-Leffler functions. <i>Journal of Computational and Applied Mathematics</i> , 2020 , 378, 112939	2.4	18
227	Dynamics of a Discrete Nonlinear Prey P redator Model. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2020 , 30, 2050055	2	3
226	Note on weakly fractional differential equations. Advances in Difference Equations, 2019, 2019,	3.6	5
225	Chaos control in the fractional order logistic map via impulses. <i>Nonlinear Dynamics</i> , 2019 , 98, 1219-1230	05	12
224	Analytical and Numerical Study on a Parametric Pendulum with the Step-Wave Modulation of Length and Forcing. <i>International Journal of Structural Stability and Dynamics</i> , 2019 , 19, 1941006	1.9	2
223	Iterative learning control for fractional-order multi-agent systems. <i>Journal of the Franklin Institute</i> , 2019 , 356, 6328-6351	4	11
222	Hyers Dlam Stability and Existence of Solutions for Differential Equations with Caputo Babrizio Fractional Derivative. <i>Mathematics</i> , 2019 , 7, 333	2.3	22
221	Periodic nonautonomous differential equations with noninstantaneous impulsive effects. <i>Mathematical Methods in the Applied Sciences</i> , 2019 , 42, 3700-3720	2.3	9
220	Hidden chaotic attractors and chaos suppression in an impulsive discrete economical supply and demand dynamical system. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 74, 1-1	13 ^{3.7}	18
219	A Survey on the Melnikov Theory for Implicit Ordinary Differential Equations with Applications to RLC Circuits. <i>Studies in Systems, Decision and Control</i> , 2019 , 121-160	0.8	1
218	Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 75, 174-191	3.7	10
217	Periodic boundary value problems for higher-order fractional differential systems. <i>Mathematical Methods in the Applied Sciences</i> , 2019 , 42, 3616-3632	2.3	11
216	Time Optimal Control of a System Governed by Non-instantaneous Impulsive Differential Equations. <i>Journal of Optimization Theory and Applications</i> , 2019 , 182, 573-587	1.6	12
215	The Application of Fractional Calculus in Chinese Economic Growth Models. <i>Mathematics</i> , 2019 , 7, 665	2.3	19
214	Rich dynamics and anticontrol of extinction in a preypredator system. <i>Nonlinear Dynamics</i> , 2019 , 98, 1421-1445	5	5
213	Symmetric nonlinear functional differential equations at resonance. <i>Electronic Journal of Qualitative Theory of Differential Equations</i> , 2019 , 1-16	0.5	1

212	Periodic solutions and stability of linear evolution equations with noninstantaneous impulses. <i>Miskolc Mathematical Notes</i> , 2019 , 20, 1299	2.1	6
211	Averaging methods for piecewise-smooth ordinary differential equations. <i>AIMS Mathematics</i> , 2019 , 4, 1466-1487	2.2	1
210	Difference equations with impulses. <i>Opuscula Mathematica</i> , 2019 , 39, 5-22	2.6	3
209	Data approximation using Lotka-Volterra models and a software minimization function. <i>Journal of Applied Mathematics, Statistics and Informatics</i> , 2019 , 15, 5-14	0.1	1
208	On a Class of Functional Differential Equations with Symmetries. Symmetry, 2019, 11, 1456	2.7	1
207	Representation of Solutions and Finite Time Stability for Delay Differential Systems with Impulsive Effects. <i>International Journal of Nonlinear Sciences and Numerical Simulation</i> , 2019 , 20, 205-221	1.8	6
206	Controllability of fractional non-instantaneous impulsive differential inclusions without compactness. <i>IMA Journal of Mathematical Control and Information</i> , 2019 , 36, 443-460	1.1	14
205	Existence of solution of a forest fire spread model. <i>Applied Mathematics Letters</i> , 2018 , 83, 227-231	3.5	1
204	Fractional-order PWC systems without zero Lyapunov exponents. <i>Nonlinear Dynamics</i> , 2018 , 92, 1061-10	D ₹ 8	17
203	Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system. <i>Nonlinear Dynamics</i> , 2018 , 91, 2523-2540	5	27
202	Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses. <i>Journal of King Saud University - Science</i> , 2018 , 30, 204-213	3.6	36
201	Convergence characteristics of PD-type and PDDEype iterative learning control for impulsive differential systems with unknown initial states. <i>JVC/Journal of Vibration and Control</i> , 2018 , 24, 3726-37	2 3	4
200	Approximation approach to periodic BVP for mixed fractional differential systems. <i>Journal of Computational and Applied Mathematics</i> , 2018 , 339, 208-217	2.4	9
199	The Stieltjes string model with external load. Applied Mathematics and Computation, 2018, 337, 350-359	2.7	2
198	Perturbed LiMorke homoclinic chaos. <i>Electronic Journal of Qualitative Theory of Differential Equations</i> , 2018 , 1-18	0.5	2
197	Application of the exp(-Pexpansion method to the Pochhammer-Chree equation. <i>Filomat</i> , 2018 , 32, 3347-3354	0.7	2
196	Applying Fractional Calculus to Analyze Economic Growth Modelling. <i>Journal of Applied Mathematics, Statistics and Informatics</i> , 2018 , 14, 25-36	0.1	15
195	Gainlbss-driven travelling waves in PT-symmetric nonlinear metamaterials. Wave Motion, 2018, 76, 9-18	1.8	1

194	A study on ILC for linear discrete systems with single delay. <i>Journal of Difference Equations and Applications</i> , 2018 , 24, 358-374	1	12	
193	Asymptotically periodic solutions for Caputo type fractional evolution equations. <i>Fractional Calculus and Applied Analysis</i> , 2018 , 21, 1294-1312	2.7	11	
192	On Equations with Generalized Periodic Right-Hand Side. <i>Ukrainian Mathematical Journal</i> , 2018 , 70, 28	88-3.148		
191	Periodically Forced Nonlinear Oscillatory Acoustic Vacuum. <i>Axioms</i> , 2018 , 7, 69	1.6	O	
190	Application of tan(I)(2)-expansion method to burgers and foam drainage equations. <i>Mathematica Slovaca</i> , 2018 , 68, 1057-1064	0.7	2	
189	Existence results of solutions for impulsive fractional differential equations. <i>Nonautonomous Dynamical Systems</i> , 2018 , 5, 35-51	0.7	3	
188	Iterative learning control with pulse compensation for fractional differential systems. <i>Mathematica Slovaca</i> , 2018 , 68, 563-574	0.7	15	
187	Note on periodic solutions of fractional differential equations. <i>Mathematical Methods in the Applied Sciences</i> , 2018 , 41, 5065-5073	2.3	2	
186	Bifurcation of travelling waves in implicit nonlinear lattices: applications in metamaterials. <i>Applicable Analysis</i> , 2017 , 96, 578-589	0.8	1	
185	Stability Analysis for a General Class of Non-instantaneous Impulsive Differential Equations. <i>Mediterranean Journal of Mathematics</i> , 2017 , 14, 1	0.9	38	
184	Impulsive stabilization of chaos in fractional-order systems. <i>Nonlinear Dynamics</i> , 2017 , 89, 1889-1903	5	12	
183	On the periodic Toda lattice hierarchy with an integral source. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2017 , 52, 110-123	3.7	7	
182	Relative controllability of semilinear delay differential systems with linear parts defined by permutable matrices. <i>European Journal of Control</i> , 2017 , 38, 39-46	2.5	21	
181	Mixed Order Fractional Differential Equations. <i>Mathematics</i> , 2017 , 5, 61	2.3	2	
180	Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. <i>Bulletin Des Sciences Mathematiques</i> , 2017 , 141, 727-746	0.7	45	
179	A new method to study ILC problem for time-delay linear systems. <i>Advances in Difference Equations</i> , 2017 , 2017,	3.6	2	
178	Periodic impulsive fractional differential equations. Advances in Nonlinear Analysis, 2017, 8, 482-496	2.8	18	
177	Center stable manifold for planar fractional damped equations. <i>Applied Mathematics and Computation</i> , 2017 , 296, 257-269	2.7	33	

176	On Numerical Integration of Discontinuous Dynamical Systems. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2017 , 27, 1750218	2	3
175	Approximation approach to periodic BVP for fractional differential systems. <i>European Physical Journal: Special Topics</i> , 2017 , 226, 3681-3692	2.3	8
174	Pseudo almost periodic solutions of an iterative equation with variable coefficients. <i>Miskolc Mathematical Notes</i> , 2017 , 18, 515	2.1	3
173	Practical Ulam-Hyers-Rassias stability for nonlinear equations 2017 , 142, 47-56		4
172	On the existence of solutions connecting IK singularities and impasse points in fully nonlinear RLC circuits. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2017 , 22, 3043-3061	1.3	1
171	Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. <i>Evolution Equations and Control Theory</i> , 2017 , 6, 471-486	2	20
170	Bifurcation from family of periodic orbits in autonomous systems 2016 , 39-69		
169	Discrete Dirichlet boundary value problems with upper semicontinuous right-hand sides. <i>Journal of Difference Equations and Applications</i> , 2016 , 22, 959-972	1	
168	Random Noninstantaneous Impulsive Models for Studying Periodic Evolution Processes in Pharmacotherapy. <i>Advances in Dynamics, Patterns, Cognition</i> , 2016 , 87-107	0.7	8
167	Looking More Closely at the Rabinovich Babrikant System. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2016 , 26, 1650038	2	24
166	On a kind of symmetric weakly non-linear ordinary differential systems. <i>Bulletin Des Sciences Mathematiques</i> , 2016 , 140, 188-230	0.7	2
165	Travelling waves in nonlinear magneto-inductive lattices. <i>Journal of Differential Equations</i> , 2016 , 260, 1717-1746	2.1	3
164	Blue sky-like catastrophe for reversible nonlinear implicit ODEs. <i>Discrete and Continuous Dynamical Systems - Series S</i> , 2016 , 9, 895-922	2.8	1
163	An introductory example 2016 , 1-6		2
162	Bifurcation from family of periodic orbits in forced billiards 2016 , 143-151		
161	Transversal periodic orbits 2016 , 157-169		
160	Sliding periodic orbits 2016 , 171-187		
159	Periodically forced impact systems 2016 , 125-141		

158	Note on a parameter switching method for nonlinear ODEs. <i>Mathematica Slovaca</i> , 2016 , 66, 439-448	0.7	4
157	A survey on impulsive fractional differential equations. <i>Fractional Calculus and Applied Analysis</i> , 2016 , 19, 806-831	2.7	146
156	Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations. <i>Applied Mathematics and Computation</i> , 2015 , 257, 230-240	2.7	14
155	Dynamics of generalized PT-symmetric dimers with time-periodic gainlbss. <i>Nonlinear Dynamics</i> , 2015 , 81, 353-371	5	7
154	Nonlocal Cauchy problems for semilinear differential inclusions with fractional order in Banach spaces. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2015 , 27, 281-293	3.7	13
153	Stability analysis of impulsive fractional-order systems by vector comparison principle. <i>Nonlinear Dynamics</i> , 2015 , 82, 2007-2019	5	20
152	On relative controllability of delayed difference equations with multiple control functions 2015,		6
151	Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. <i>Applied Mathematics and Computation</i> , 2015 , 257, 103-118	2.7	77
150	On the periodic Toda lattice with a self-consistent source. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2015 , 22, 1223-1234	3.7	7
149	A General Class of Impulsive Evolution Equations. <i>Topological Methods in Nonlinear Analysis</i> , 2015 , 1	Ο	15
148	On the existence of solutions connecting singularities in nonlinear RLC circuits. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2015 , 116, 26-36	1.3	4
147	On the nonlocal Cauchy problem for semilinear fractional order evolution equations. <i>Open Mathematics</i> , 2014 , 12,	0.8	8
146	Response to Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19:401B.] [In Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 4213-4215]	3.7	25
145	Melnikov theory for nonlinear implicit ODEs. <i>Journal of Differential Equations</i> , 2014 , 256, 1157-1190	2.1	9
144	Persistence of periodic orbits in periodically forced impact systems. <i>Mathematica Slovaca</i> , 2014 , 64,	0.7	3
143	On the chaotic behavior of non-flat billiards. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2014 , 19, 1442-1464	3.7	О
142	Solvability of fully nonlinear functional equations involving Erdlyi-Kober fractional integrals on the unbounded interval. <i>Optimization</i> , 2014 , 63, 1235-1248	1.2	6
141	On the New Control Functions for Linear Discrete Delay Systems. <i>SIAM Journal on Control and Optimization</i> , 2014 , 52, 1745-1760	1.9	46

140	Melnikov theory for weakly coupled nonlinear RLC circuits. Boundary Value Problems, 2014, 2014,	2.1	3
139	Analysis of Abel-type nonlinear integral equations with weakly singular kernels. <i>Boundary Value Problems</i> , 2014 , 2014, 20	2.1	8
138	Travelling Waves in Nonlinear Magnetic Metamaterials. <i>Advances in Dynamics, Patterns, Cognition</i> , 2014 , 335-358	0.7	5
137	Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2014 , 24, 1450008	2	26
136	Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. <i>Mathematica Slovaca</i> , 2014 , 64,	0.7	11
135	Note on fractional difference Gronwall inequalities. <i>Electronic Journal of Qualitative Theory of Differential Equations</i> , 2014 , 1-18	0.5	3
134	Controllability of Sobolev type fractional evolution systems. <i>Dynamics of Partial Differential Equations</i> , 2014 , 11, 71-87	0.8	41
133	On the stability of first order impulsive evolution equations. <i>Opuscula Mathematica</i> , 2014 , 34, 639	2.6	16
132	Periodic Travelling Waves of Forced FPU Lattices. <i>Journal of Dynamics and Differential Equations</i> , 2013 , 25, 795-820	1.3	6
131	Fast-slow dynamical approximation of forced impact systems near periodic solutions. <i>Boundary Value Problems</i> , 2013 , 2013,	2.1	4
130	Abstract Cauchy problem for fractional differential equations. <i>Nonlinear Dynamics</i> , 2013 , 71, 685-700	5	60
129	Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations. <i>Journal of Optimization Theory and Applications</i> , 2013 , 156, 13-32	1.6	41
128	Bifurcation from single periodic orbit in discontinuous autonomous systems. <i>Applicable Analysis</i> , 2013 , 92, 1085-1100	0.8	4
127	Hermite⊞adamard-type inequalities for r-convex functions based on the use of Riemann⊡iouville fractional integrals. <i>Ukrainian Mathematical Journal</i> , 2013 , 65, 193-211	0.4	21
126	Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices. <i>Ukrainian Mathematical Journal</i> , 2013 , 65, 64-76	0.4	38
125	Presentation of solutions of impulsive fractional Langevin equations and existence results. <i>European Physical Journal: Special Topics</i> , 2013 , 222, 1857-1874	2.3	46
124	Existence, uniqueness and limit property of solutions to quadratic Erdlyi-Kober type integral equations of fractional order. <i>Open Physics</i> , 2013 , 11,	1.3	3
123	Bifurcation of sliding periodic orbits in periodically forced discontinuous systems. <i>Nonlinear Analysis: Real World Applications</i> , 2013 , 14, 150-162	2.1	11

(2011-2013)

122	Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators. <i>Journal of Optimization Theory and Applications</i> , 2013 , 156, 79-95	1.6	87
121	Representation of a Solution of the Cauchy Problem for an Oscillating System with Multiple Delays and Pairwise Permutable Matrices. <i>Abstract and Applied Analysis</i> , 2013 , 2013, 1-10	0.7	7
120	Observability of difference equations with a delay 2013,		3
119	Forced Fermi-Pasta-Ulam lattice maps. <i>Miskolc Mathematical Notes</i> , 2013 , 14, 63	2.1	3
118	Discretization of dynamical systems with first integrals. <i>Discrete and Continuous Dynamical Systems</i> , 2013 , 33, 3543-3554	2	2
117	Ulam type stability of impulsive ordinary differential equations. <i>Journal of Mathematical Analysis and Applications</i> , 2012 , 395, 258-264	1.1	162
116	On recent developments in the theory of boundary value problems for impulsive fractional differential equations. <i>Computers and Mathematics With Applications</i> , 2012 , 64, 3008-3020	2.7	105
115	Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. <i>Physica D: Nonlinear Phenomena</i> , 2012 , 241, 1962-1975	3.3	41
114	Bifurcation from Family of Periodic Orbits in Discontinuous Autonomous Systems. <i>Differential Equations and Dynamical Systems</i> , 2012 , 20, 207-234	0.8	11
113	Inflated deterministic chaos and Smale's horseshoe. <i>Journal of Difference Equations and Applications</i> , 2012 , 18, 471-488	1	
112	Nonlocal Cauchy problems for fractional evolution equations involving Volterra-Fredholm type integral operators. <i>Miskolc Mathematical Notes</i> , 2012 , 13, 127	2.1	6
111	Fractional Integral Inequalities for Differentiable Convex Mappings and Applications to Special Means and a Midpoint Formula. <i>Journal of Applied Mathematics, Statistics and Informatics</i> , 2012 , 8, 21-28	3 ^{0.1}	15
110	Chaos in forced impact systems. <i>Discrete and Continuous Dynamical Systems - Series S</i> , 2012 , 6, 861-890	2.8	9
109	Chaos in Discontinuous Differential Equations. <i>Nonlinear Physical Science</i> , 2011 , 249-334	0.1	1
108	Bifurcation and Chaos in Discontinuous and Continuous Systems. Nonlinear Physical Science, 2011,	0.1	26
107	On the Chaotic Behaviour of Discontinuous Systems. <i>Journal of Dynamics and Differential Equations</i> , 2011 , 23, 495-540	1.3	21
106	On the stability of a domain-wall brane model. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2011 , 74, 4989-4999	1.3	1
	Alternative results and robustness for fractional evolution equations with periodic boundary	0.5	

104	On symmetric and periodic solutions of parametric weakly nonlinear ODE with time-reversal symmetries. <i>Bulletin of the Belgian Mathematical Society - Simon Stevin</i> , 2011 , 18,	2.1	4
103	Travelling waves of forced discrete nonlinear Schrlinger equations. <i>Discrete and Continuous Dynamical Systems - Series S</i> , 2011 , 4, 1129-1145	2.8	2
102	On the new concept of solutions and existence results for impulsive fractional evolution equations. <i>Dynamics of Partial Differential Equations</i> , 2011 , 8, 345-361	0.8	135
101	Chaos in Partial Differential Equations. <i>Nonlinear Physical Science</i> , 2011 , 167-248	0.1	
100	Chaos in Discrete Dynamical Systems. <i>Nonlinear Physical Science</i> , 2011 , 29-85	0.1	
99	Concluding Related Topics. <i>Nonlinear Physical Science</i> , 2011 , 335-374	0.1	
98	Chaos in Ordinary Differential Equations. Nonlinear Physical Science, 2011, 87-165	0.1	
97	Preliminary Results. <i>Nonlinear Physical Science</i> , 2011 , 9-28	0.1	
96	Travelling waves of discrete nonlinear Schrdinger equations with nonlocal interactions. <i>Applicable Analysis</i> , 2010 , 89, 1387-1411	0.8	12
95	An example of chaotic behaviour in presence of a sliding homoclinic orbit. <i>Annali Di Matematica Pura Ed Applicata</i> , 2010 , 189, 615-642	0.8	8
94	Multivalued perturbations of a saddle dynamics. <i>Differential Equations and Dynamical Systems</i> , 2010 , 18, 29-56	0.8	5
93	Bifurcation and chaos near sliding homoclinics. <i>Journal of Differential Equations</i> , 2010 , 248, 2227-2262	2.1	37
92	On the uniqueness, stability and hyperbolicity of symmetric and periodic solutions of weakly nonlinear ordinary differential equations. <i>Miskolc Mathematical Notes</i> , 2009 , 10, 11	2.1	5
91	Topological Degree Approach to Bifurcation Problems 2008,		29
90	Periodic moving waves on 2D lattices with nearest-neighbor interactions. <i>Ukrainian Mathematical Journal</i> , 2008 , 60, 141-158	0.4	1
89	Homoclinic Trajectories in Discontinuous Systems. <i>Journal of Dynamics and Differential Equations</i> , 2008 , 20, 337-376	1.3	38
88	Periodic solutions of a periodically forced and undamped beam resting on weakly elastic bearings. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2008 , 59, 212-243	1.6	
87	The existence of chaos in infinite dimensional non-resonant systems. <i>Dynamics of Partial Differential Equations</i> , 2008 , 5, 185-209	0.8	3

86	Weakly coupled oscillators and topological degree. Bulletin Des Sciences Mathematiques, 2007, 131, 559)-5 <i>7</i> ₇ 1	О
85	Transverse bounded solutions to saddledenters in periodically perturbed ordinary differential equations. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2007 , 67, 249-269	1.3	2
84	Bifurcation conditions for a solution of an abstract wave equation. <i>Differential Equations</i> , 2007 , 43, 495-	-50 7	3
83	Travelling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions. <i>Nonlinearity</i> , 2007 , 20, 319-341	1.7	27
82	Forced Symmetric Oscillations. Bulletin of the Belgian Mathematical Society - Simon Stevin, 2007, 14,	2.1	2
81	On the chaotic behavior of a compressed beam. <i>Dynamics of Partial Differential Equations</i> , 2007 , 4, 55-8	6 0.8	1
80	Bifurcations of planar sliding homoclinics. <i>Mathematical Problems in Engineering</i> , 2006 , 2006, 1-13	1.1	7
79	Periodic Solutions of Symmetric Elliptic Singular Systems: the Higher Codimension Case. <i>Advanced Nonlinear Studies</i> , 2006 , 6, 109-132	1.2	1
78	Forced symmetric oscillations of evolution equations. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2006 , 64, 1621-1640	1.3	2
77	Minimal periods of periodic solutions. <i>Miskolc Mathematical Notes</i> , 2006 , 7, 121	2.1	4
76	Periodic Solutions of Symmetric Elliptic Singular Systems. <i>Advanced Nonlinear Studies</i> , 2005 , 5, 163-196	1.2	1
75	Chaos in the beam equation. Journal of Differential Equations, 2005, 209, 172-227	2.1	3
74	On continuous approximation of discontinuous systems. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2005 , 62, 1317-1331	1.3	27
73	CHAOS IN NONAUTONOMOUS DIFFERENTIAL INCLUSIONS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2005 , 15, 1919-1930	2	7
7 2	Kink-like periodic travelling waves for lattice equations with on-site and inter-site potentials. <i>Dynamics of Partial Differential Equations</i> , 2005 , 2, 357-370	0.8	4
71	Travelling Waves in a Perturbed Discrete Sine-Gordon Equation 2004 , 497-501		
70	The Existence of Chaos for Ordinary Differential Equations with a Center Manifold. <i>Bulletin of the Belgian Mathematical Society - Simon Stevin</i> , 2004 , 11,	2.1	3
69	Anti-periodic forced oscillations of damped beams on elastic bearings. <i>Dynamics of Partial Differential Equations</i> , 2004 , 1, 339-357	0.8	2

68	Blue sky catastrophes in weakly coupled chains of reversible oscillators. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2003 , 3, 193-200	1.3	3
67	Transversal Bounded Solutions for Difference Equations. <i>Journal of Difference Equations and Applications</i> , 2002 , 8, 33-51	1	2
66	Chaos arising near a topologically transversal homoclinic set. <i>Topological Methods in Nonlinear Analysis</i> , 2002 , 20, 195	Ο	8
65	Topologically transversal reversible homoclinic sets. <i>Proceedings of the American Mathematical Society</i> , 2002 , 130, 3369-3377	0.8	2
64	A generalization of Bendixson criterion. <i>Proceedings of the American Mathematical Society</i> , 2001 , 129, 3395-3399	0.8	10
63	Criteria on the Nonexistence of Invariant Lipschitz Submanifolds for Dynamical Systems. <i>Journal of Differential Equations</i> , 2001 , 174, 392-419	2.1	6
62	Transversal homoclinic orbits for higher dimensional difference equations. <i>Journal of Difference Equations and Applications</i> , 2001 , 7, 215-230	1	1
61	Galerkin-Averaging Method in Infinite-Dimensional Spaces for Weakly Nonlinear Problems 2001 , 269-2	279	
60	Transversal Bounded Solutions in Systems with Normal and Slow Variables. <i>Journal of Differential Equations</i> , 2000 , 165, 123-142	2.1	4
59	Bifurcation from Homoclinic to Periodic Solutions in Singular Ordinary Differential Equations. Journal of Mathematical Analysis and Applications, 2000, 246, 245-264	1.1	11
58	A Galerkin-averaging method for weakly nonlinear equations. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2000 , 41, 345-369	1.3	3
57	Existence of Almost Periodic Solutions for Jumping Discontinuous Systems. <i>Acta Mathematica Hungarica</i> , 2000 , 86, 291-303	0.8	8
56	Homoclinic-Hopf interaction: an autoparametric bifurcation. <i>Proceedings of the Royal Society of Edinburgh Section A: Mathematics</i> , 2000 , 130, 999-1015	1	4
55	Chaotic solutions in differential inclusions: chaos in dry friction problems. <i>Transactions of the American Mathematical Society</i> , 1999 , 351, 2861-2873	1	11
54	Discontinuous wave equations and a topological degree for some classes of multi-valued mappings. <i>Applications of Mathematics</i> , 1999 , 44, 15-32		3
53	Bifurcation of Periodics and Subharmonics in Abstract Nonlinear Undamped Wave Equations. <i>Journal of Differential Equations</i> , 1999 , 153, 41-60	2.1	3
52	Free Vibrations of Beams on Bearings with Nonlinear Elastic Responses. <i>Journal of Differential Equations</i> , 1999 , 154, 55-72	2.1	12
51	Bifurcation from degenerate homoclinics in periodically forced systems. <i>Discrete and Continuous Dynamical Systems</i> , 1999 , 5, 359-374	2	8

50	Periodic Oscillations of Abstract Wave Equations. <i>Journal of Dynamics and Differential Equations</i> , 1998 , 10, 605-617	1.3	
49	Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions. <i>Proceedings of the Royal Society of Edinburgh Section A: Mathematics</i> , 1997 , 127, 727-753	1	4
48	Chaos in ordinary differential equations with multivalued perturbations: Applications to dry friction problems. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1997 , 30, 1355-1364	1.3	3
47	Bifurcation of periodic solutions in differential inclusions. <i>Applications of Mathematics</i> , 1997 , 42, 369-39	93	13
46	Chaos in singular impulsive O.D.E <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1997 , 28, 655-67	l 1.3	12
45	Nontrivial critical points of asymptotically quadratic functions at resonances. <i>Annales Polonici Mathematici</i> , 1997 , 67, 43-57	1.3	3
44	Bifurcation from Homoclinic to Periodic Solutions in Ordinary Differential Equations with Multivalued Perturbations. <i>Journal of Differential Equations</i> , 1996 , 130, 415-450	2.1	9
43	Subharmonic Solutions in Singular Systems. <i>Journal of Differential Equations</i> , 1996 , 132, 21-45	2.1	14
42	The G-equivariant cusp and fold in Banach spaces. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1996 , 26, 395-405	1.3	
41	Heteroclinic period blow-up in certain symmetric ordinary differential equations. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 1996 , 47, 385-399	1.6	2
40	Global center manifolds in singular systems. <i>Nonlinear Differential Equations and Applications</i> , 1996 , 3, 19-34	0.8	8
39	A symmetry theorem for dynamical systems. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1995 , 25, 591-605	1.3	1
38	Periodic Solutions of Certain Abstract Wave Equations. <i>Proceedings of the American Mathematical Society</i> , 1995 , 123, 465	0.8	4
37	On the Existence of Periodic Solutions for a Certain Type of Nonlinear Differential Equations. <i>Journal of Differential Equations</i> , 1995 , 121, 28-41	2.1	2
36	On the Continuous Dependence of Solutions of Nonlinear Equations. <i>Journal of Mathematical Analysis and Applications</i> , 1995 , 194, 578-596	1.1	2
35	Periodic solutions of certain abstract wave equations. <i>Proceedings of the American Mathematical Society</i> , 1995 , 123, 465-465	0.8	9
34	Differential Equations with Nonlinear Boundary Conditions. <i>Proceedings of the American Mathematical Society</i> , 1994 , 121, 103	0.8	1
33	Singularly Perturbed Higher Order Boundary Value Problems. <i>Journal of Differential Equations</i> , 1994 , 111, 79-102	2.1	19

32	Multiple Periodic Solutions of Small Vector Fields on Differentiable Manifolds. <i>Journal of Differential Equations</i> , 1994 , 113, 189-200	2.1	7
31	An Inverse Function Theorem for Continuous Mappings. <i>Journal of Mathematical Analysis and Applications</i> , 1994 , 185, 118-128	1.1	2
30	Parametrized Singular Boundary Value Problems. <i>Journal of Mathematical Analysis and Applications</i> , 1994 , 188, 417-425	1.1	9
29	Parametrized Singularly Perturbed Boundary Value Problems. <i>Journal of Mathematical Analysis and Applications</i> , 1994 , 188, 426-435	1.1	15
28	A symmetry theorem for ordinary differential equations. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1994 , 23, 1437-1452	1.3	2
27	Differential equations with nonlinear boundary conditions. <i>Proceedings of the American Mathematical Society</i> , 1994 , 121, 103-103	0.8	3
26	Discretization of Second-Order Variational Systems. <i>Proceedings of the American Mathematical Society</i> , 1993 , 117, 575	0.8	
25	Nielsen Fixed Point Theory and Nonlinear Equations. <i>Journal of Differential Equations</i> , 1993 , 106, 312-3	3 1 .1	10
24	On the existence of chaotic behaviour of diffeomorphisms. <i>Applications of Mathematics</i> , 1993 , 38, 101-	122	4
23	The interaction of linear boundary value and nonlinear functional conditions. <i>Annales Polonici Mathematici</i> , 1993 , 58, 299-310	1.3	4
22	Singularly perturbed ordinary differential equations. <i>Journal of Mathematical Analysis and Applications</i> , 1992 , 170, 214-224	1.1	1
21	Singular perturbed problems in ordinary differential equations. <i>Journal of Mathematical Analysis and Applications</i> , 1992 , 163, 38-46	1.1	4
20	Singularly perturbed variational problems. <i>Journal of Mathematical Analysis and Applications</i> , 1992 , 171, 352-360	1.1	
19	Melnikov functions for singularly perturbed ordinary differential equations. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1992 , 19, 393-401	1.3	9
18	A symmetry theorem for variational problems. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1991 , 16, 499-506	1.3	5
17	A new method for the existence of solutions of nonlinear differential equations. <i>Journal of Differential Equations</i> , 1991 , 89, 203-223	2.1	5
16	Discretization in the Method of Averaging. <i>Proceedings of the American Mathematical Society</i> , 1991 , 113, 1105	0.8	1
15	Bifurcation of heteroclinic orbits for diffeomorphisms. <i>Applications of Mathematics</i> , 1991 , 36, 355-367		5

LIST OF PUBLICATIONS

14	Asymptotic behavior of stable manifolds. <i>Proceedings of the American Mathematical Society</i> , 1991 , 111, 585-585	0.8	7	
13	Discretization in the method of averaging. <i>Proceedings of the American Mathematical Society</i> , 1991 , 113, 1105-1105	0.8	5	
12	A Class of $\$\$(omega, \{mathbb \{T\}\})$ $\$\$-Periodic Solutions for Impulsive Evolution Equations of Sobolev Type1$		1	
11	Convergence Analysis for Iterative Learning Control of Conformable Impulsive Differential Equations 1		5	
10	(IJc)-periodic solutions for time-varying non-instantaneous impulsive differential systems. <i>Applicable Analysis</i> ,1-21	0.8	2	
9	Explicit solution of atmospheric Ekman flows with some types of Eddy viscosity. <i>Monatshefte Fur Mathematik</i> ,1	0.7	2	
8	Constant vorticity water flows in the modified equatorial (beta)-plane approximation. <i>Monatshefte Fur Mathematik</i> ,1	0.7	2	
7	Local and Global Analysis for Discontinuous Atmospheric Ekman Equations. <i>Journal of Dynamics and Differential Equations</i> ,1	1.3	4	
6	Existence and Ulam-Hyers stability of positive solutions for a nonlinear model for the Antarctic Circumpolar Current. <i>Monatshefte Fur Mathematik</i> ,1	0.7	О	
5	Ulam type stability for first-order linear and nonlinear impulsive fuzzy differential equations. International Journal of Computer Mathematics, 1-23	1.2	2	
4	The Ekman spiral for two types of eddy viscosities. <i>Applicable Analysis</i> ,1-14	0.8	1	
3	Monotonicity of horizontal fluid velocity and pressure gradient distribution beneath equatorial Stokes waves. <i>Monatshefte Fur Mathematik</i> ,1	0.7	Ο	
2	Stratified equatorial flows in the \$\$beta \$\$-plane approximation with a free surface. <i>Monatshefte Fur Mathematik</i> ,1	0.7	0	
1	Periodic Solutions in Slowly Varying Discontinuous Differential Equations: A Non-Generic Case. Journal of Dynamics and Differential Equations,1	1.3	0	