
Amro B Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5929799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in Phytochemical Compounds and Antioxidant Activity of Two Irradiated Sorghum (Sorghum) Tj ETQq1 Fermentation, 2022, 8, 60.	1 0.78431 1.4	4 rgBT /Ove 4
2	Exploiting the potential of Sudanese sorghum landraces in biofortification: Physicochemical quality of the grain of sorghum (Sorghum bicolor L. Moench) landraces. Food Chemistry, 2021, 337, 127604.	4.2	13
3	Biochemical Changes during Traditional Fermentation of Saudi Sorghum (<i>Sorghum bicolor</i> L.) Cultivars Flour into Khamir (Local Gluten Free Bread). Journal of Oleo Science, 2021, 70, 409-415.	0.6	3
4	The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum lycopersicum) Fruits. Foods, 2021, 10, 734.	1.9	12
5	Effects of microwave heat treatment on fungal growth, functional properties, total phenolic content, and antioxidant activity of sorghum (Sorghum bicolor L.) grain. Food Chemistry, 2021, 348, 128979.	4.2	27
6	Effect of Natural Fermentation on the Chemical Composition, Mineral Content, Phytochemical Compounds, and Antioxidant Activity of Ziziphus spina-christi (L.) "Nabag―Seeds. Processes, 2021, 9, 1228.	1.3	6
7	Effects of Boiling and Roasting Treatments on the Content of Total Phenolics and Flavonoids and the Antioxidant Activity of Peanut (Arachis hypogaea L.) Pod Shells. Processes, 2021, 9, 1542.	1.3	9
8	Inhibition of Lipid Accumulation and Adipokine Levels in Maturing Adipocytes by Bauhinia rufescens (Lam.) Stem Bark Extract Loaded Titanium Oxide Nanoparticles. Molecules, 2021, 26, 7238.	1.7	5
9	Effect of UV-C radiation treatment on microbial load and antioxidant capacity in hot pepper, fennel and coriander. LWT - Food Science and Technology, 2020, 134, 109946.	2.5	12
10	Effect of oven roasting treatment on the antioxidant activity, phenolic compounds, fatty acids, minerals, and protein profile of Samh (Mesembryanthemum forsskalei Hochst) seeds. LWT - Food Science and Technology, 2020, 131, 109825.	2.5	22
11	Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chemistry, 2019, 271, 142-147.	4.2	48
12	Nutritional potential of wild sorghum: Grain quality of Sudanese wild sorghum genotypes (<i>Sorghum bicolor</i> L. Moench). Food Science and Nutrition, 2019, 7, 1529-1539.	1.5	26
13	Effect of gamma irradiation and microwave heating treatments on microbial load and antioxidant potentials in cinnamon, fennel and hot pepper. Journal of Food Measurement and Characterization, 2019, 13, 1130-1138.	1.6	6
14	Effects of gamma irradiation on the protein characteristics and functional properties of sesame () Tj ETQq0 0 0 rg	gBT_/Overlo	၁ငန္ဒ ₅ 10 Tf 50
15	Effect of gamma radiation on storability and functional properties of sorghum grains (<i>Sorghum) Tj ETQq1 1 0.</i>	784314 rş 1.5	gBT /Overloc
16	Estimation of Phenolic and Flavonoid Compounds and Antioxidant Activity of Spent Coffee and Black Tea (Processing) Waste for Potential Recovery and Reuse in Sudan. Recycling, 2018, 3, 27.	2.3	39
17	Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Science and Nutrition, 2018, 6, 1214-1219.	1.5	140

18Effect of $\langle i \rangle \hat{I}^3 \langle i \rangle$ radiation processing on fungal growth and quality characteristics of millet grains.1.5301.5

Amro B Hassan

#	Article	lF	CITATIONS
19	Effect of radio frequency heating on nutritional quality and protein solubility of corn. Food Science and Nutrition, 2016, 4, 686-689.	1.5	16
20	Effects of gamma irradiation and/or cooking on nutritional quality of faba bean (Vicia faba L.) cultivars seeds. Journal of Food Science and Technology, 2014, 51, 1554-1560.	1.4	47
21	Effect of radiation processing on in vitro protein digestibility and availability of calcium, phosphorus and iron of peanut. Radiation Physics and Chemistry, 2013, 91, 200-202.	1.4	7
22	Antinutritional factor content and hydrochloric acid extractability of minerals in pearl millet cultivars as affected by germination. International Journal of Food Sciences and Nutrition, 2007, 58, 6-17.	1.3	45
23	Effect of Malt Pretreatment on Antinutritional Factors and HCl Extractability of Minerals of Sorghum Cultivars. Pakistan Journal of Nutrition, 2005, 4, 396-401.	0.2	5
24	Effect of different salt concentrations on the gammaâ€aminobutyricâ€acid content and glutamate decarboxylase activity in germinated sorghum (<i>Sorghum bicolor</i> L. Moench) grain. Food Science and Nutrition, 0, , .	1.5	2