Erica Bree Rosenblum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5929442/publications.pdf

Version: 2024-02-01

68 papers

3,600 citations

172457 29 h-index 57 g-index

70 all docs 70 docs citations

70 times ranked

4085 citing authors

#	Article	IF	CITATIONS
1	The recombination landscapes of spiny lizards (genus <i>Sceloporus</i>). G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	O
2	Genetic isolation by distance underlies colour pattern divergence in redâ€eyed treefrogs (<i>Agalychnis) Tj ETQ</i>	q0 <u>g.</u> g rgB	T /Qverlock 10
3	Host species is linked to pathogen genotype for the amphibian chytrid fungus (Batrachochytrium) Tj ETQq1 1 0	.784314 rş	gBT ₇ /Overlock
4	Genetic variation of <i>Batrachochytrium dendrobatidis</i> is linked to skin bacterial diversity in the Pacific treefrog <i>Hyliola regilla</i> (<i>hypochondriaca</i>). Environmental Microbiology, 2022, 24, 494-506.	3.8	6
5	Skin bacterial metacommunities of San Francisco Bay Area salamanders are structured by host genus and habitat quality. FEMS Microbiology Ecology, 2022, 97, .	2.7	10
6	Early presence of <i>Batrachochytrium dendrobatidis</i> in Mexico with a contemporary dominance of the global panzootic lineage. Molecular Ecology, 2021, 30, 424-437.	3.9	21
7	Whole exome sequencing identifies the potential for genetic rescue in iconic and critically endangered Panamanian harlequin frogs. Global Change Biology, 2021, 27, 50-70.	9.5	15
8	Phylogenomics of peacock spiders and their kin (Salticidae: <i>Maratus</i>), with implications for the evolution of male courtship displays. Biological Journal of the Linnean Society, 2021, 132, 471-494.	1.6	5
9	Divergent regional evolutionary histories of a devastating global amphibian pathogen. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210782.	2.6	10
10	Thermal Performance Curves of Multiple Isolates of Batrachochytrium dendrobatidis, a Lethal Pathogen of Amphibians. Frontiers in Veterinary Science, 2021, 8, 687084.	2.2	9
11	Genetic and phenotypic evidence of a contact zone between divergent colour morphs of the iconic redâ€eyed treefrog. Molecular Ecology, 2020, 29, 4442-4456.	3.9	12
12	Stepping into the past to conserve the future: Archived skin swabs from extant and extirpated populations inform genetic management of an endangered amphibian. Molecular Ecology, 2020, 29, 2598-2611.	3.9	3
13	Comment on "Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity― Science, 2020, 367, .	12.6	40
14	Invasive vegetation affects amphibian skin microbiota and body condition. PeerJ, 2020, 8, e8549.	2.0	9
15	Fungal infection, decline and persistence in the only obligate troglodytic Neotropical salamander. Peerl, 2020, 8, e9763.	2.0	5
16	Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20382-20387.	7.1	86
17	Local adaptation does not lead to genomeâ€wide differentiation in lava flow lizards. Ecology and Evolution, 2019, 9, 6810-6820.	1.9	12
18	Phenotypic and genetic diversity in aposematic Malagasy poison frogs (genus <i>Mantella</i>). Ecology and Evolution, 2019, 9, 2725-2742.	1.9	11

#	Article	IF	CITATIONS
19	Conservation genomics of desert dwelling California voles (Microtus californicus) and implications for management of endangered Amargosa voles (Microtus californicus scirpensis). Conservation Genetics, 2018, 19, 383-395.	1.5	12
20	Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science, 2018, 359, 1517-1519.	12.6	127
21	Opening the file drawer: Unexpected insights from a chytrid infection experiment. PLoS ONE, 2018, 13, e0196851.	2.5	8
22	Population genetic structure of the endangered Sierra Nevada yellow-legged frog (Rana sierrae) in Yosemite National Park based on multi-locus nuclear data from swab samples. Conservation Genetics, 2017, 18, 731-744.	1.5	10
23	Neuroanatomical Changes Related to a Changing Environment in Lesser Earless Lizards. Journal of Herpetology, 2017, 51, 258-262.	0.5	6
24	Convergent Phenotypic Evolution despite Contrasting Demographic Histories in the Fauna of White Sands. American Naturalist, 2017, 190, S44-S56.	2.1	18
25	Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia, 2017, 184, 363-373.	2.0	78
26	Unlocking the story in the swab: A new genotyping assay for the amphibian chytrid fungus <i>Batrachochytrium dendrobatidis</i> . Molecular Ecology Resources, 2017, 17, 1283-1292.	4.8	33
27	Host Defense Skin Peptides Vary with Color Pattern in the Highly Polymorphic Red-Eyed Treefrog. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	8
28	The population genomics of rapid adaptation: disentangling signatures of selection and demography in white sands lizards. Molecular Ecology, 2016, 25, 306-323.	3.9	56
29	Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11889-11894.	7.1	129
30	Geographic Color Variation and Physiological Color Change in Eastern Collared Lizards (Crotaphytus) Tj ETQq0 () 0 ggBT /C	verlock 10 Tf
31	Colonization of a novel depauperate habitat leads to trophic niche shifts in three desert lizard species. Oikos, 2016, 125, 343-353.	2.7	17
32	Mountain Yellow-legged Frogs (<i>Rana muscosa</i>) did not Produce Detectable Antibodies in Immunization Experiments with <i>Batrachochytrium dendrobatidis</i> . Journal of Wildlife Diseases, 2016, 52, 154-158.	0.8	9
33	Fear of failure in conservation: The problem and potential solutions to aid conservation of extremely small populations. Biological Conservation, 2015, 184, 209-217.	4.1	60
34	Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. EcoHealth, 2015, 12, 404-407.	2.0	45
35	Contextâ€dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 2015, 13, 195-202.	4.0	147
36	Evidence for ecological release over a fine spatial scale in a lizard from the White Sands formation. Oikos, 2015, 124, 1624-1631.	2.7	11

#	Article	IF	Citations
37	Genomic Correlates of Virulence Attenuation in the Deadly Amphibian Chytrid Fungus, <i>Batrachochytrium dendrobatidis </i> i> Genes, Genomes, Genetics, 2015, 5, 2291-2298.	1.8	45
38	Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline. ISME Journal, 2015, 9, 1570-1578.	9.8	47
39	When Field Experiments Yield Unexpected Results: Lessons Learned from Measuring Selection in White Sands Lizards. PLoS ONE, 2015, 10, e0118560.	2.5	9
40	Beyond black and white: divergent behaviour and performance in three rapidly evolving lizard species at White Sands. Biological Journal of the Linnean Society, 2014, 111, 169-182.	1.6	10
41	Experimental evolution alters the rate and temporal pattern of population growth in $\langle i \rangle$ Batrachochytrium dendrobatidis $\langle i \rangle$, a lethal fungal pathogen of amphibians. Ecology and Evolution, 2014, 4, 3633-3641.	1.9	28
42	The Molecular Basis of Phenotypic Convergence. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 203-226.	8.3	222
43	Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9385-9390.	7.1	238
44	Asymmetrical mate preference in recently adapted White Sands and black lava populations of Sceloporus undulatus. Environmental Epigenetics, 2013, 59, 20-30.	1.8	14
45	Pathophysiology in Mountain Yellow-Legged Frogs (Rana muscosa) during a Chytridiomycosis Outbreak. PLoS ONE, 2012, 7, e35374.	2.5	55
46	Temperature alters reproductive life history patterns in <i>Batrachochytrium dendrobatidis</i> , a lethal pathogen associated with the global loss of amphibians. Ecology and Evolution, 2012, 2, 2241-2249.	1.9	79
47	Goldilocks Meets Santa Rosalia: An Ephemeral Speciation Model Explains Patterns of Diversification Across Time Scales. Evolutionary Biology, 2012, 39, 255-261.	1.1	195
48	Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Molecular Ecology, 2012, 21, 3110-3120.	3.9	82
49	Substrate-Specific Gene Expression in Batrachochytrium dendrobatidis, the Chytrid Pathogen of Amphibians. PLoS ONE, 2012, 7, e49924.	2.5	46
50	Colonization of novel White Sands habitat is associated with changes in lizard anti-predator behaviour. Biological Journal of the Linnean Society, 2011, 103, 657-667.	1.6	17
51	Interactions between Batrachochytrium dendrobatidis and its amphibian hosts: a review of pathogenesis and immunity. Microbes and Infection, 2011, 13, 25-32.	1.9	113
52	Genomic Transition to Pathogenicity in Chytrid Fungi. PLoS Pathogens, 2011, 7, e1002338.	4.7	99
53	Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2113-2117.	7.1	264
54	The Deadly Chytrid Fungus: A Story of an Emerging Pathogen. PLoS Pathogens, 2010, 6, e1000550.	4.7	50

#	Article	IF	CITATIONS
55	Batrachochytrium dendrobatidis: requirement for further isolate collection and archiving. Diseases of Aquatic Organisms, 2010, 92, 109-112.	1.0	4
56	Batrachochytrium dendrobatidis infection dynamics in the Columbia spotted frog Rana luteiventris in north Idaho, USA. Diseases of Aquatic Organisms, 2010, 92, 223-230.	1.0	24
57	Preserving pathogens for wildlife conservation: a case for action on amphibian declines. Oryx, 2009, 43, 527.	1.0	12
58	Toward Immunogenetic Studies of Amphibian Chytridiomycosis: Linking Innate and Acquired Immunity. BioScience, 2009, 59, 311-320.	4.9	90
59	A molecular perspective: biology of the emerging pathogen Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 2009, 92, 131-147.	1.0	28
60	Genome-Wide Transcriptional Response of Silurana (Xenopus) tropicalis to Infection with the Deadly Chytrid Fungus. PLoS ONE, 2009, 4, e6494.	2.5	84
61	Global gene expression profiles for life stages of the deadly amphibian pathogen <i>Batrachochytrium dendrobatidis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17034-17039.	7.1	101
62	Thirteen polymorphic microsatellite DNA loci from whiptails of the genus <i>Aspidoscelis </i> (Teiidae:) Tj ETQq0	0	Overlock 10 ⁻
63	Preference for Local Mates in a Recently Diverged Population of the Lesser Earless Lizard (Holbrookia) Tj ETQq1 1	0,784314	1 rgBT /Overl
64	Ascertainment Bias in Spatially Structured Populations: A Case Study in the Eastern Fence Lizard. Journal of Heredity, 2007, 98, 331-336.	2.4	82
65	Convergent Evolution and Divergent Selection: Lizards at the White Sands Ecotone. American Naturalist, 2006, 167, 1-15.	2.1	222
66	The Role of Phenotypic Plasticity in Color Variation of Tularosa Basin Lizards. Copeia, 2005, 2005, 586-596.	1.3	52
67	ADAPTIVE REPTILE COLOR VARIATION AND THE EVOLUTION OF THE MCIR GENE. Evolution; International Journal of Organic Evolution, 2004, 58, 1794-1808.	2.3	198
68	Rapid divergence of social signal coloration across the White Sands ecotone for three lizard species under strong natural selection. Biological Journal of the Linnean Society, 0, 98, 243-255.	1.6	28