
Thomas Helleday

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5929124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005, 434, 913-917.	27.8	4,382
2	Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 2006, 444, 633-637.	27.8	1,777
3	DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 2008, 8, 193-204.	28.4	1,432
4	Mechanisms underlying mutational signatures in human cancers. Nature Reviews Genetics, 2014, 15, 585-598.	16.3	703
5	Hydroxyurea-Stalled Replication Forks Become Progressively Inactivated and Require Two Different RAD51-Mediated Pathways for Restart and Repair. Molecular Cell, 2010, 37, 492-502.	9.7	695
6	Replication stress links structural and numerical cancer chromosomal instability. Nature, 2013, 494, 492-496.	27.8	694
7	The underlying mechanism for the PARP and BRCA synthetic lethality: Clearing up the misunderstandings. Molecular Oncology, 2011, 5, 387-393.	4.6	664
8	The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nature Cell Biology, 2005, 7, 195-201.	10.3	588
9	DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair, 2007, 6, 923-935.	2.8	550
10	PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO Journal, 2009, 28, 2601-2615.	7.8	512
11	Inhibition of Human Chk1 Causes Increased Initiation of DNA Replication, Phosphorylation of ATR Targets, and DNA Breakage. Molecular and Cellular Biology, 2005, 25, 3553-3562.	2.3	487
12	MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 2014, 508, 215-221.	27.8	419
13	miR-182-Mediated Downregulation of BRCA1 Impacts DNA Repair and Sensitivity to PARP Inhibitors. Molecular Cell, 2011, 41, 210-220.	9.7	409
14	Break-Induced Replication Repair of Damaged Forks Induces Genomic Duplications in Human Cells. Science, 2014, 343, 88-91.	12.6	387
15	Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature, 2005, 434, 108-113.	27.8	382
16	Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nature Communications, 2018, 9, 2419.	12.8	374
17	SETD2-Dependent Histone H3K36 Trimethylation Is Required for Homologous Recombination Repair and Genome Stability. Cell Reports, 2014, 7, 2006-2018.	6.4	370
18	DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells11Edited by J. Karn. Journal of Molecular Biology, 2001, 307, 1235-1245.	4.2	345

#	Article	IF	CITATIONS
19	Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 2014, 508, 222-227.	27.8	336
20	Pathways of mammalian replication fork restart. Nature Reviews Molecular Cell Biology, 2010, 11, 683-687.	37.0	305
21	Spontaneous Homologous Recombination Is Induced by Collapsed Replication Forks That Are Caused by Endogenous DNA Single-Strand Breaks. Molecular and Cellular Biology, 2005, 25, 7158-7169.	2.3	303
22	Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Research, 2005, 33, 3799-3811.	14.5	291
23	Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2. Cell, 2010, 142, 65-76.	28.9	284
24	Pathways for mitotic homologous recombination in mammalian cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 532, 103-115.	1.0	279
25	Mre11-Dependent Degradation of Stalled DNA Replication Forks Is Prevented by BRCA2 and PARP1. Cancer Research, 2012, 72, 2814-2821.	0.9	272
26	Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Research, 2003, 31, 4959-4964.	14.5	258
27	PCNA on the crossroad of cancer. Biochemical Society Transactions, 2009, 37, 605-613.	3.4	258
28	Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Research, 2011, 39, 3166-3175.	14.5	248
29	Chk1 promotes replication fork progression by controlling replication initiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16090-16095.	7.1	240
30	Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis, 2010, 31, 955-960.	2.8	234
31	Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Research, 2004, 32, 3683-3688.	14.5	230
32	Different Roles for Nonhomologous End Joining and Homologous Recombination following Replication Arrest in Mammalian Cells. Molecular and Cellular Biology, 2002, 22, 5869-5878.	2.3	212
33	Contextual Synthetic Lethality of Cancer Cell Kill Based on the Tumor Microenvironment. Cancer Research, 2010, 70, 8045-8054.	0.9	211
34	The histone methyltransferase SET8 is required for S-phase progression. Journal of Cell Biology, 2007, 179, 1337-1345.	5.2	207
35	Poly(ADP-Ribose) Polymerase Is Hyperactivated in Homologous Recombination–Defective Cells. Cancer Research, 2010, 70, 5389-5398.	0.9	195
36	Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Research, 2006, 34, 1685-1691.	14.5	182

#	Article	IF	CITATIONS
37	Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nature Communications, 2017, 8, 374.	12.8	180
38	Poly(ADP-ribose) Polymerase (PARP-1) in Homologous Recombination and as a Target for Cancer Therapy. Cell Cycle, 2005, 4, 1176-1178.	2.6	174
39	Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE, 2018, 13, e0191231.	2.5	157
40	Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science, 2018, 362, 834-839.	12.6	156
41	Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. Journal of Cell Biology, 2010, 188, 629-638.	5.2	146
42	The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells. Nucleic Acids Research, 2007, 36, 1-9.	14.5	145
43	The DNA Damaging Revolution: PARP Inhibitors and Beyond. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 185-195.	3.8	144
44	Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Reports, 2018, 19, .	4.5	136
45	Managing COVID-19 in the oncology clinic and avoiding the distraction effect. Annals of Oncology, 2020, 31, 553-555.	1.2	136
46	PARP-3 Is a Mono-ADP-ribosylase That Activates PARP-1 in the Absence of DNA. Journal of Biological Chemistry, 2010, 285, 8054-8060.	3.4	135
47	A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nature Communications, 2017, 8, 1541.	12.8	124
48	Brominated flame retardants induce intragenic recombination in mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 439, 137-147.	1.7	122
49	PARP1- and CTCF-Mediated Interactions between Active and Repressed Chromatin at the Lamina Promote Oscillating Transcription. Molecular Cell, 2015, 59, 984-997.	9.7	120
50	<i>PTEN</i> Deletion in Prostate Cancer Cells Does Not Associate with Loss of RAD51 Function: Implications for Radiotherapy and Chemotherapy. Clinical Cancer Research, 2012, 18, 1015-1027.	7.0	119
51	Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20752-20757.	7.1	118
52	A Small Interfering RNA Screen of Genes Involved in DNA Repair Identifies Tumor-Specific Radiosensitization by POLQ Knockdown. Cancer Research, 2010, 70, 2984-2993.	0.9	116
53	Processing of protein ADP-ribosylation by Nudix hydrolases. Biochemical Journal, 2015, 468, 293-301.	3.7	113
54	Validation and development of MTH1 inhibitors for treatment of cancer. Annals of Oncology, 2016, 27, 2275-2283.	1.2	111

4

#	Article	IF	CITATIONS
55	UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Research, 2011, 39, 7049-7057.	14.5	108
56	Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma. Immunologic Research, 2017, 65, 706-712.	2.9	107
57	Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities. Cell Reports, 2016, 14, 298-309.	6.4	105
58	Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Scientific Reports, 2014, 4, 5372.	3.3	103
59	Claspin Promotes Normal Replication Fork Rates in Human Cells. Molecular Biology of the Cell, 2008, 19, 2373-2378.	2.1	102
60	6-Thioguanine Selectively Kills BRCA2-Defective Tumors and Overcomes PARP Inhibitor Resistance. Cancer Research, 2010, 70, 6268-6276.	0.9	102
61	Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nature Medicine, 2017, 23, 256-263.	30.7	102
62	RAD51 is Involved in Repair of Damage Associated with DNA Replication in Mammalian Cells. Journal of Molecular Biology, 2003, 328, 521-535.	4.2	101
63	Identification of the MMS22L-TONSL Complex that Promotes Homologous Recombination. Molecular Cell, 2010, 40, 632-644.	9.7	100
64	Targeting homologous recombination repair defects in cancer. Trends in Pharmacological Sciences, 2010, 31, 372-380.	8.7	100
65	Targeting <scp>DNA</scp> repair, <scp>DNA</scp> metabolism and replication stress as anti ancer strategies. FEBS Journal, 2016, 283, 232-245.	4.7	100
66	Overexpression of <i>POLQ</i> Confers a Poor Prognosis in Early Breast Cancer Patients. Oncotarget, 2010, 1, 175-184.	1.8	100
67	The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. International Journal of Cancer, 2003, 105, 472-479.	5.1	98
68	Timeless Interacts with PARP-1 to Promote Homologous Recombination Repair. Molecular Cell, 2015, 60, 163-176.	9.7	98
69	Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2. Nature Communications, 2015, 6, 7871.	12.8	96
70	NUDT15 Hydrolyzes 6-Thio-DeoxyGTP to Mediate the Anticancer Efficacy of 6-Thioguanine. Cancer Research, 2016, 76, 5501-5511.	0.9	96
71	Structural Basis for Inhibitor Specificity in Human Poly(ADP-ribose) Polymerase-3. Journal of Medicinal Chemistry, 2009, 52, 3108-3111.	6.4	88
72	ATM is required for the cellular response to thymidine induced replication fork stress. Human Molecular Genetics, 2004, 13, 2937-2945.	2.9	87

#	Article	IF	CITATIONS
73	Transcription-Associated Recombination Is Dependent on Replication in Mammalian Cells. Molecular and Cellular Biology, 2008, 28, 154-164.	2.3	86
74	The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links. Nucleic Acids Research, 2009, 37, 6400-6413.	14.5	81
75	Downregulation of SMG-1 in HPV-Positive Head and Neck Squamous Cell Carcinoma Due to Promoter Hypermethylation Correlates with Improved Survival. Clinical Cancer Research, 2012, 18, 1257-1267.	7.0	77
76	Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nature Communications, 2018, 9, 3872.	12.8	77
77	Up-regulation of the error-prone DNA polymerase {kappa} promotes pleiotropic genetic alterations and tumorigenesis. Cancer Research, 2005, 65, 325-30.	0.9	74
78	Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis, 2009, 24, 203-210.	2.6	73
79	The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2′-deoxycytidine lesions. Nucleic Acids Research, 2014, 42, 9108-9120.	14.5	73
80	Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair. Science Translational Medicine, 2015, 7, 312re11.	12.4	73
81	WRN Is Required for ATM Activation and the S-Phase Checkpoint in Response to Interstrand Cross-Link–Induced DNA Double-Strand Breaks. Molecular Biology of the Cell, 2008, 19, 3923-3933.	2.1	72
82	Drugging DNA repair. Science, 2016, 352, 1178-1179.	12.6	71
83	DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair. Cancer Research, 2016, 76, 1078-1088.	0.9	71
84	RAD18 and Poly(ADP-Ribose) Polymerase Independently Suppress the Access of Nonhomologous End Joining to Double-Strand Breaks and Facilitate Homologous Recombination-Mediated Repair. Molecular and Cellular Biology, 2007, 27, 2562-2571.	2.3	70
85	Crystal structure of human MTH1 and the 8-oxo-dGMP product complex. FEBS Letters, 2011, 585, 2617-2621.	2.8	70
86	Defects in homologous recombination repair in mismatch-repair-deficient tumour cell lines. Human Molecular Genetics, 2002, 11, 2189-2200.	2.9	67
87	Crystal Structure of the Emerging Cancer Target MTHFD2 in Complex with a Substrate-Based Inhibitor. Cancer Research, 2017, 77, 937-948.	0.9	67
88	The RAD51 protein supports homologous recombination by an exchange mechanism in mammalian cells 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 289, 1231-1238.	4.2	66
89	Methylated DNA Causes a Physical Block to Replication Forks Independently of Damage Signalling, O6-Methylguanine or DNA Single-Strand Breaks and Results in DNA Damage. Journal of Molecular Biology, 2010, 402, 70-82.	4.2	64
90	Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16856-16861.	7.1	64

#	Article	IF	CITATIONS
91	RPA Mediates Recombination Repair During Replication Stress and Is Displaced from DNA by Checkpoint Signalling in Human Cells. Journal of Molecular Biology, 2007, 373, 38-47.	4.2	63
92	Homologous recombination repairs secondary replication induced DNA double-strand breaks after ionizing radiation. Nucleic Acids Research, 2012, 40, 6585-6594.	14.5	63
93	Castration Therapy Results in Decreased Ku70 Levels in Prostate Cancer. Clinical Cancer Research, 2013, 19, 1547-1556.	7.0	62
94	XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair. DNA Repair, 2010, 9, 835-841.	2.8	58
95	Lysophosphatidic acid receptor (LPAR) modulators: The current pharmacological toolbox. Progress in Lipid Research, 2015, 58, 51-75.	11.6	57
96	p53 protects from replication-associated DNA double-strand breaks in mammalian cells. Oncogene, 2004, 23, 2324-2329.	5.9	56
97	Zinc Binding Catalytic Domain of Human Tankyrase 1. Journal of Molecular Biology, 2008, 379, 136-145.	4.2	56
98	ATMâ€mediated phosphorylation of polynucleotide kinase/phosphatase is required for effective DNA doubleâ€strand break repair. EMBO Reports, 2011, 12, 713-719.	4.5	56
99	5-Aza-2′-deoxycytidine causes replication lesions that require Fanconi anemia-dependent homologous recombination for repair. Nucleic Acids Research, 2013, 41, 5827-5836.	14.5	56
100	SAMHD1 protects cancer cells from various nucleoside-based antimetabolites. Cell Cycle, 2017, 16, 1029-1038.	2.6	56
101	Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. Nature Communications, 2018, 9, 250.	12.8	56
102	Global survey of the immunomodulatory potential of common drugs. Nature Chemical Biology, 2017, 13, 681-690.	8.0	53
103	The scaffold protein WRAP53β orchestrates the ubiquitin response critical for DNA double-strand break repair. Genes and Development, 2014, 28, 2726-2738.	5.9	52
104	U-CAN: a prospective longitudinal collection of biomaterials and clinical information from adult cancer patients in Sweden. Acta OncolÃ ³ gica, 2018, 57, 187-194.	1.8	52
105	Arsenic[III] and heavy metal ions induce intrachromosomal homologous recombination in thehprt gene of V79 Chinese hamster cells. , 2000, 35, 114-122.		50
106	A partial HPRT gene duplication generated by non-homologous recombination in V79 chinese hamster cells is eliminated by homologous recombination. Journal of Molecular Biology, 1998, 279, 687-694.	4.2	49
107	Inhibition of DNA synthesis is a potent mechanism by which cytostatic drugs induce homologous recombination in mammalian cells. Mutation Research DNA Repair, 2000, 461, 221-228.	3.7	49
108	Pathways controlling dNTP pools to maintain genome stability. DNA Repair, 2016, 44, 193-204.	2.8	49

#	Article	IF	CITATIONS
109	Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks. Nucleic Acids Research, 2014, 42, 6326-6336.	14.5	48
110	With me or against me: Tumor suppressor and drug resistance activities of SAMHD1. Experimental Hematology, 2017, 52, 32-39.	0.4	43
111	Targeting BER enzymes in cancer therapy. DNA Repair, 2018, 71, 118-126.	2.8	43
112	Homologous recombination is involved in repair of chromium-induced DNA damage in mammalian cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 599, 116-123.	1.0	42
113	PARP inhibitor receives FDA breakthrough therapy designation in castration resistant prostate cancer: beyond germline BRCA mutations. Annals of Oncology, 2016, 27, 755-757.	1.2	42
114	Discovery of the First Potent and Selective Inhibitors of Human dCTP Pyrophosphatase 1. Journal of Medicinal Chemistry, 2016, 59, 1140-1148.	6.4	40
115	Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition. Cancer Research, 2016, 76, 2366-2375.	0.9	40
116	Thymidine Selectively Enhances Growth Suppressive Effects of Camptothecin/Irinotecan in MSI+ Cells and Tumors Containing a Mutation of <i>MRE11</i> . Clinical Cancer Research, 2008, 14, 5476-5483.	7.0	39
117	A patient-derived xenograft pre-clinical trial reveals treatment responses and a resistance mechanism to karonudib in metastatic melanoma. Cell Death and Disease, 2018, 9, 810.	6.3	38
118	Mitotic defects in XRCC3 variants T241M and D213N and their relation to cancer susceptibility. Human Molecular Genetics, 2006, 15, 1217-1224.	2.9	37
119	<scp>ATM</scp> /Wip1 activities at chromatin control Plk1 reâ€activation to determine G2 checkpoint duration. EMBO Journal, 2017, 36, 2161-2176.	7.8	37
120	An orthotopic glioblastoma animal model suitable for high-throughput screenings. Neuro-Oncology, 2018, 20, 1475-1484.	1.2	37
121	Reduced apoptotic response to camptothecin in CHO cells deficient in XRCC3. Carcinogenesis, 2003, 24, 249-253.	2.8	36
122	A new concise synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives. New Journal of Chemistry, 2013, 37, 3595.	2.8	36
123	SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways. Cell Cycle, 2013, 12, 3770-3780.	2.6	36
124	PathwAX: a web server for network crosstalk based pathway annotation. Nucleic Acids Research, 2016, 44, W105-W109.	14.5	36
125	Amplifying tumour-specific replication lesions by DNA repair inhibitors – A new era in targeted cancer therapy. European Journal of Cancer, 2008, 44, 921-927.	2.8	35
126	FANCD1/BRCA2 Plays Predominant Role in the Repair of DNA Damage Induced by ACNU or TMZ. PLoS ONE, 2011, 6, e19659.	2.5	35

#	Article	IF	CITATIONS
127	Breast cancer stem-like cells show dominant homologous recombination due to a larger S-G ₂ fraction. Cancer Biology and Therapy, 2011, 11, 1028-1035.	3.4	35
128	<i>N</i> â€Acyl Taurines are Antiâ€Proliferative in Prostate Cancer Cells. Lipids, 2012, 47, 355-361.	1.7	35
129	Early replication fragile sites: where replication–transcription collisions cause genetic instability. EMBO Journal, 2013, 32, 493-495.	7.8	35
130	The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy-inhibitory activity. Cell Death and Differentiation, 2020, 27, 773-789.	11.2	35
131	Ribonucleotide reductase inhibitors suppress <scp>SAMHD</scp> 1 ara― <scp>CTP</scp> ase activity enhancing cytarabine efficacy. EMBO Molecular Medicine, 2020, 12, e10419.	6.9	35
132	DNA repair rate and etoposide (VP16) resistance of tumor cell subpopulations derived from a single human small cell lung cancer. Lung Cancer, 2003, 40, 157-164.	2.0	34
133	<i>Ex vivo</i> culture of cells derived from circulating tumour cell xenograft to support small cell lung cancer research and experimental therapeutics. British Journal of Pharmacology, 2019, 176, 436-450.	5.4	34
134	Structural basis of inhibition of the human serine hydroxymethyltransferase <scp>SHMT</scp> 2 by antifolate drugs. FEBS Letters, 2019, 593, 1863-1873.	2.8	34
135	Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget, 2010, 1, 606-619.	1.8	34
136	BRCA2-dependent homologous recombination is required for repair of Arsenite-induced replication lesions in mammalian cells. Nucleic Acids Research, 2009, 37, 5105-5113.	14.5	33
137	Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage. Biochemical and Biophysical Research Communications, 2011, 404, 206-210.	2.1	33
138	Targeting Protein for Xenopus Kinesin-like Protein 2 (TPX2) Regulates γ-Histone 2AX (γ-H2AX) Levels upon Ionizing Radiation. Journal of Biological Chemistry, 2012, 287, 42206-42222.	3.4	33
139	A novel method for crosstalk analysis of biological networks: improving accuracy of pathway annotation. Nucleic Acids Research, 2017, 45, e8-e8.	14.5	33
140	CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair, 2011, 10, 961-969.	2.8	32
141	Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Journal of Medicinal Chemistry, 2017, 60, 8160-8169.	6.4	32
142	Cancer phenotypic lethality, exemplified by the non-essential MTH1 enzyme being required for cancer survival. Annals of Oncology, 2014, 25, 1253-1255.	1.2	31
143	A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair. Cell Discovery, 2015, 1, 15034.	6.7	30
144	Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nature Cancer, 2022, 3, 156-172.	13.2	30

#	Article	IF	CITATIONS
145	Genotoxicity of alcohol is linked to DNA replication-associated damage and homologous recombination repair. Carcinogenesis, 2013, 34, 325-330.	2.8	29
146	Addiction to MTH1 protein results in intense expression in human breast cancer tissue as measured by liquid chromatography-isotope-dilution tandem mass spectrometry. DNA Repair, 2015, 33, 101-110.	2.8	29
147	Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Research, 2020, 48, 12234-12251.	14.5	29
148	Clioblastoma and glioblastoma stem cells are dependent on functional MTH1. Oncotarget, 2017, 8, 84671-84684.	1.8	29
149	Homologous recombination mediates cellular resistance and fraction size sensitivity to radiation therapy. Radiotherapy and Oncology, 2013, 108, 155-161.	0.6	28
150	dUTPase inhibition augments replication defects of 5-Fluorouracil. Oncotarget, 2017, 8, 23713-23726.	1.8	27
151	Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells. Experimental Cell Research, 2011, 317, 330-337.	2.6	24
152	The Relationship Between Homologous Recombination Repair and the Sensitivity of Human Epidermis to the Size of Daily Doses Over a 5-Week Course of Breast Radiotherapy. Clinical Cancer Research, 2012, 18, 5479-5488.	7.0	24
153	Biological Relevance of DNA Polymerase Beta and Translesion Synthesis Polymerases to Cancer and its Treatment. Current Molecular Pharmacology, 2012, 5, 54-67.	1.5	24
154	CHK1 activity is required for continuous replication fork elongation but not stabilization of post-replicative gaps after UV irradiation. Nucleic Acids Research, 2012, 40, 8440-8448.	14.5	23
155	Putting poly (ADP-ribose) polymerase and other DNA repair inhibitors into clinical practice. Current Opinion in Oncology, 2013, 25, 609-614.	2.4	23
156	Chronic Low Dose Rate Ionizing Radiation Exposure Induces Premature Senescence in Human Fibroblasts that Correlates with Up Regulation of Proteins Involved in Protection against Oxidative Stress. Proteomes, 2014, 2, 341-362.	3.5	23
157	Vinylic MIDA Boronates: New Building Blocks for the Synthesis of Azaâ€Heterocycles. Chemistry - A European Journal, 2015, 21, 7394-7398.	3.3	23
158	Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion. Cell Cycle, 2017, 16, 189-199.	2.6	23
159	Karonudib is a promising anticancer therapy in hepatocellular carcinoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986696.	3.2	23
160	TH1579, MTH1 inhibitor, delays tumour growth and inhibits metastases development in osteosarcoma model. EBioMedicine, 2020, 53, 102704.	6.1	23
161	Gefitinib and Afatinib Show Potential Efficacy for Fanconi Anemia–Related Head and Neck Cancer. Clinical Cancer Research, 2020, 26, 3044-3057.	7.0	23
162	Castration Therapy of Prostate Cancer Results in Downregulation of HIF-1α Levels. International Journal of Radiation Oncology Biology Physics, 2012, 82, 1243-1248.	0.8	22

#	Article	IF	CITATIONS
163	Novel Broad-Spectrum Antiviral Inhibitors Targeting Host Factors Essential for Replication of Pathogenic RNA Viruses. Viruses, 2020, 12, 1423.	3.3	22
164	Cell Cycle Profiling Reveals Protein Oscillation, Phosphorylation, and Localization Dynamics. Molecular and Cellular Proteomics, 2020, 19, 608-623.	3.8	22
165	RAD51 supports spontaneous non-homologous recombination in mammalian cells, but not the corresponding process induced by topoisomerase inhibitors. Nucleic Acids Research, 2001, 29, 662-667.	14.5	21
166	Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Scientific Reports, 2021, 11, 3490.	3.3	21
167	Making immunotherapy â€~cold' tumours â€~hot' by chemotherapy-induced mutations—a misconceptic Annals of Oncology, 2019, 30, 360-361.	n 1.2	20
168	AXL and CAV-1 play a role for MTH1 inhibitor TH1579 sensitivity in cutaneous malignant melanoma. Cell Death and Differentiation, 2020, 27, 2081-2098.	11.2	20
169	Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget, 2010, 1, 606-19.	1.8	20
170	Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science, 2022, 376, 1471-1476.	12.6	20
171	Screening for genotoxicity using the DRAG assay: investigation of halogenated environmental contaminants. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 563, 35-47.	1.7	19
172	E2F-7 couples DNA damage-dependent transcription with the DNA repair process. Cell Cycle, 2013, 12, 3037-3051.	2.6	19
173	Chemical strategies for development of ATR inhibitors. Expert Reviews in Molecular Medicine, 2014, 16, e10.	3.9	19
174	Piperazin-1-ylpyridazine Derivatives Are a Novel Class of Human dCTP Pyrophosphatase 1 Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 4279-4292.	6.4	19
175	Mutations in Cancer Cause Gain of Cysteine, Histidine, and Tryptophan at the Expense of a Net Loss of Arginine on the Proteome Level. Biomolecules, 2017, 7, 49.	4.0	19
176	Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS Omega, 2019, 4, 11642-11656.	3.5	19
177	Thermal Proteome Profiling Identifies Oxidative-Dependent Inhibition of the Transcription of Major Oncogenes as a New Therapeutic Mechanism for Select Anticancer Compounds. Cancer Research, 2020, 80, 1538-1550.	0.9	19
178	NEIL3 Prevents Senescence in Hepatocellular Carcinoma by Repairing Oxidative Lesions at Telomeres during Mitosis. Cancer Research, 2021, 81, 4079-4093.	0.9	19
179	Strategies for the Use of Poly(adenosine diphosphate ribose) Polymerase (PARP) Inhibitors in Cancer Therapy. Biomolecules, 2012, 2, 635-649.	4.0	18
180	DNA damage response in peritumoral regions of oesophageal cancer microenvironment. Carcinogenesis, 2013, 34, 139-145.	2.8	18

#	Article	IF	CITATIONS
181	Strand invasion involving short tract gene conversion is specifically suppressed in BRCA2-deficient hamster cells. Oncogene, 2004, 23, 9136-9141.	5.9	17
182	Transcription-associated recombination is independent of XRCC2 and mechanistically separate from homology-directed DNA double-strand break repair. Nucleic Acids Research, 2008, 37, 405-412.	14.5	17
183	PrimPol breaks replication barriers. Nature Structural and Molecular Biology, 2013, 20, 1348-1350.	8.2	17
184	Identification of novel small molecules that inhibit STAT3-dependent transcription and function. PLoS ONE, 2017, 12, e0178844.	2.5	17
185	A tumour-derived mutant allele of XRCC2 preferentially suppresses homologous recombination at DNA replication forks. Human Molecular Genetics, 2003, 13, 203-212.	2.9	16
186	Caffeine delays replication fork progression and enhances UV-induced homologous recombination in Chinese hamster cell lines. DNA Repair, 2006, 5, 1449-1458.	2.8	16
187	Human RECQL5 overcomes thymidine-induced replication stress. DNA Repair, 2010, 9, 964-975.	2.8	16
188	A Convenient Microwaveâ€Assisted Propylphosphonic Anhydride (T3P [®]) Mediated Oneâ€Pot Pyrazolone Synthesis. European Journal of Organic Chemistry, 2013, 2013, 5879-5885.	2.4	16
189	OGG1 Inhibitor TH5487 Alters OGG1 Chromatin Dynamics and Prevents Incisions. Biomolecules, 2020, 10, 1483.	4.0	16
190	In silico Druggability Assessment of the NUDIX Hydrolase Protein Family as a Workflow for Target Prioritization. Frontiers in Chemistry, 2020, 8, 443.	3.6	16
191	MTH1 Inhibitor TH588 Disturbs Mitotic Progression and Induces Mitosis-Dependent Accumulation of Genomic 8-oxodG. Cancer Research, 2020, 80, 3530-3541.	0.9	16
192	Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
193	MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Cancer Research, 2021, 81, 5733-5744.	0.9	15
194	Broadly Active Antiviral Compounds Disturb Zika Virus Progeny Release Rescuing Virus-Induced Toxicity in Brain Organoids. Viruses, 2021, 13, 37.	3.3	15
195	Identification of Triazolothiadiazoles as Potent Inhibitors of the dCTP Pyrophosphatase 1. Journal of Medicinal Chemistry, 2017, 60, 2148-2154.	6.4	14
196	Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination. DNA Repair, 2017, 57, 116-124.	2.8	14
197	STAT3 differential scanning fluorimetry and differential scanning light scattering assays: Addressing a missing link in the characterization of STAT3 inhibitor interactions. Journal of Pharmaceutical and Biomedical Analysis, 2018, 160, 80-88.	2.8	14
198	Development of a chemical probe against NUDT15. Nature Chemical Biology, 2020, 16, 1120-1128.	8.0	14

#	Article	IF	CITATIONS
199	Crystal structures of human PAICS reveal substrate and product binding of an emerging cancer target. Journal of Biological Chemistry, 2020, 295, 11656-11668.	3.4	14
200	NUDT1 promotes the accumulation and longevity of CD103+ TRM cells in primary biliary cholangitis. Journal of Hepatology, 2022, 77, 1311-1324.	3.7	14
201	DNA repair as treatment target. European Journal of Cancer, 2011, 47, S333-S335.	2.8	13
202	A facile and efficient synthesis of tetrahydro- \hat{l}^2 -carbolines. Tetrahedron Letters, 2013, 54, 3554-3557.	1.4	13
203	Poisoning Cancer Cells with Oxidized Nucleosides. New England Journal of Medicine, 2015, 373, 1570-1571.	27.0	13
204	MutT homologue 1 (MTH1) catalyzes the hydrolysis of mutagenic O6-methyl-dGTP. Nucleic Acids Research, 2018, 46, 10888-10904.	14.5	13
205	Biological relevance of DNA polymerase β and translesion synthesis polymerases to cancer and its treatment. Current Molecular Pharmacology, 2012, 5, 54-67.	1.5	13
206	Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Molecular Oncology, 2022, 16, 3792-3810.	4.6	13
207	Development and validation of method for TH588 and TH287, potent MTH1 inhibitors and new anti-cancer agents, for pharmacokinetic studies in mice plasma. Journal of Pharmaceutical and Biomedical Analysis, 2015, 104, 1-11.	2.8	12
208	NEIL1 and NEIL2 Are Recruited as Potential Backup for OGG1 upon OGG1 Depletion or Inhibition by TH5487. International Journal of Molecular Sciences, 2021, 22, 4542.	4.1	12
209	Human NUDT22 Is a UDP-Glucose/Galactose Hydrolase Exhibiting a Unique Structural Fold. Structure, 2018, 26, 295-303.e6.	3.3	11
210	Crystal Structures and Inhibitor Interactions of Mouse and Dog MTH1 Reveal Species-Specific Differences in Affinity. Biochemistry, 2018, 57, 593-603.	2.5	11
211	Homologous recombination mediates S-phase-dependent radioresistance in cells deficient in DNA polymerase eta. Carcinogenesis, 2012, 33, 2026-2034.	2.8	10
212	Uncoupling of RAD51 focus formation and cell survival after replication fork stalling in RAD51D null CHO cells. Environmental and Molecular Mutagenesis, 2012, 53, 114-124.	2.2	10
213	Germline variation in the oxidative DNA repair genes NUDT1 and OGG1 is not associated with hereditary colorectal cancer or polyposis. Human Mutation, 2018, 39, 1214-1225.	2.5	10
214	MutT homologue 1 (MTH1) removes N6-methyl-dATP from the dNTP pool. Journal of Biological Chemistry, 2020, 295, 4761-4772.	3.4	10
215	MTH1 Inhibitors for the Treatment of Psoriasis. Journal of Investigative Dermatology, 2021, 141, 2037-2048.e4.	0.7	10
216	Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination. DNA Repair, 2009, 8, 1424-1433.	2.8	9

#	Article	IF	CITATIONS
217	Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Research, 2019, 47, 7418-7429.	14.5	9
218	Ex vivo assessment of targeted therapies in a rare metastatic epithelial–myoepithelial carcinoma. Neoplasia, 2020, 22, 390-398.	5.3	9
219	NUDT15-mediated hydrolysis limits the efficacy of anti-HCMV drug ganciclovir. Cell Chemical Biology, 2021, 28, 1693-1702.e6.	5.2	9
220	Adaptation to Chronic-Cycling Hypoxia Renders Cancer Cells Resistant to MTH1-Inhibitor Treatment Which Can Be Counteracted by Glutathione Depletion. Cells, 2021, 10, 3040.	4.1	9
221	The XPD subunit of TFIIH is required for transcription-associated but not DNA double-strand break-induced recombination in mammalian cells. Mutagenesis, 2010, 25, 623-629.	2.6	8
222	Targeted Mutations in the ATR Pathway Define Agent-Specific Requirements for Cancer Cell Growth and Survival. Molecular Cancer Therapeutics, 2012, 11, 98-107.	4.1	8
223	Production, Purification, and Characterization of 15N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. Methods in Enzymology, 2016, 566, 305-332.	1.0	8
224	Distinct mechanistic responses to replication fork stalling induced by either nucleotide or protein deprivation. Cell Cycle, 2018, 17, 568-579.	2.6	8
225	Crystal structures of NUDT15 variants enabled by a potent inhibitor reveal the structural basis for thiopurine sensitivity. Journal of Biological Chemistry, 2021, 296, 100568.	3.4	8
226	Transcription Inhibition by DRB Potentiates Recombinational Repair of UV Lesions in Mammalian Cells. PLoS ONE, 2011, 6, e19492.	2.5	8
227	A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate. MedChemComm, 2018, 9, 1105-1113.	3.4	7
228	Crystal Structure and Substrate Specificity of the 8-oxo-dGTP Hydrolase NUDT1 from <i>Arabidopsis thaliana</i> . Biochemistry, 2019, 58, 887-899.	2.5	7
229	Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget, 2015, 6, 37638-37646.	1.8	7
230	MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death and Differentiation, 2021, , .	11.2	6
231	The First Structure of Human MTHFD2L and Its Implications for the Development of Isoformâ€Selective Inhibitors. ChemMedChem, 2022, 17, .	3.2	6
232	Karonudib has potent anti-tumor effects in preclinical models of B-cell lymphoma. Scientific Reports, 2021, 11, 6317.	3.3	5
233	MutT Homolog 1 Inhibitor Karonudib Attenuates Autoimmune Hepatitis by Inhibiting DNA Repair in Activated T Cells. Hepatology Communications, 2022, 6, 1016-1031.	4.3	5
234	Minor structural modifications to alchemix influence mechanism of action and pharmacological activity. Biochemical Pharmacology, 2012, 83, 1514-1522.	4.4	4

#	Article	IF	CITATIONS
235	Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 2: Pyridone- and pyrimidinone-derived systems. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3219-3225.	2.2	4
236	Novel spirocyclic systems via multicomponent aza-Diels–Alder reaction. Organic and Biomolecular Chemistry, 2017, 15, 7758-7764.	2.8	4
237	Coexpression of MTH1 and PMS2 Is Associated with Advanced Disease and Disease Progression after Therapy in Melanoma. Journal of Investigative Dermatology, 2022, 142, 736-740.e6.	0.7	4
238	OGG1 Inhibition Triggers Synthetic Lethality and Enhances The Effect of PARP Inhibitor Olaparib in BRCA1-Deficient TNBC Cells. Frontiers in Oncology, 2022, 12, .	2.8	4
239	Radiation Resistance in Cancer Therapy: Meeting Summary and Research Opportunities Report of an NCI Workshop held September 1–3, 2010. Radiation Research, 2011, 176, e0016-e0021.	1.5	3
240	High content drug screening for Fanconi anemia therapeutics. Orphanet Journal of Rare Diseases, 2020, 15, 170.	2.7	3
241	Using personalized immune-humanized xenograft mouse models to predict immune checkpoint responses in malignant melanoma: potential and hurdles. Annals of Oncology, 2020, 31, 167-168.	1.2	3
242	PolÎ, inhibitors unchained. Nature Cancer, 2021, 2, 581-583.	13.2	3
243	The Cockayne syndrome protein B is involved in the repair of 5-AZA-2′-deoxycytidine-induced DNA lesions. Oncotarget, 2018, 9, 35069-35084.	1.8	3
244	Inhibition of Oxidized Nucleotide Sanitation By TH1579 and Conventional Chemotherapy Cooperatively Enhance Oxidative DNA Damage and Survival in AML. Molecular Cancer Therapeutics, 2022, 21, 703-714.	4.1	3
245	Nudix hydrolase 18 catalyzes the hydrolysis of active triphosphate metabolites of the antivirals remdesivir, ribavirin, and molnupiravir. Journal of Biological Chemistry, 2022, 298, 102169.	3.4	3
246	The DRAG Test: An Assay for Detection of Genotoxic Damage. ATLA Alternatives To Laboratory Animals, 2001, 29, 233-241.	1.0	2
247	Mutagenesis: Mutating a Gene While Reading It. Current Biology, 2010, 20, R57-R58.	3.9	2
248	New Translational Possibilities for Microenvironmental Modulation of Radiosensitivity. Radiation Research, 2011, 176, 412-414.	1.5	2
249	Transcription inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) causes DNA damage and triggers homologous recombination repair in mammalian cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 706, 1-6.	1.0	2
250	Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 1: Triazoles, triazolopyrimidines, triazinoindoles, quinoline hydrazones and arylpiperazines. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3897-3904.	2.2	2
251	MetaCNV - a consensus approach to infer accurate copy numbers from low coverage data. BMC Medical Genomics, 2020, 13, 76.	1.5	2
252	The First Structure of an Active Mammalian dCTPase and its Complexes With Substrate Analogs and Products. Journal of Molecular Biology, 2020, 432, 1126-1142.	4.2	2

#	Article	IF	CITATIONS
253	Overexpression of cyclin E does not influence homologous recombination in Chinese hamster cells. Biochemical and Biophysical Research Communications, 2002, 296, 363-367.	2.1	1
254	PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA Journal of Biological Chemistry, 2012, 287, 34494.	3.4	1
255	Tetrahydrobenzothiophene carboxamides: Beyond the kinase domain and into the fatty acid realm. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4462-4466.	2.2	1
256	Structure–metabolism-relationships in the microsomal clearance of piperazin-1-ylpyridazines. MedChemComm, 2017, 8, 1553-1560.	3.4	1
257	Targeting DNA Repair in Anti-Cancer Treatments. Cancer Drug Discovery and Development, 2018, , 1-9.	0.4	1
258	Inhibition of DNA repair as a therapeutic target. , 2008, , 284-304.		0
259	Development of Small Molecule NUDT22 Inhibitors for Uses in Cancer. Medical Sciences Forum, 2021, 3,	0.5	0
260	Inhibitors of DNA Repair and Response to Ionising Radiation. , 2011, , 143-171.		0
261	Abstract PR016: The spatial landscape of clonal somatic mutations in benign and malignant tissue. Cancer Research, 2022, 82, PR016-PR016.	0.9	0