Souvarish Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5929101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 30.	5.3	189
2	Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. Journal of Experimental Medicine, 2019, 216, 1411-1430.	8.5	169
3	Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease. Journal of Neuroscience, 2015, 35, 10058-10077.	3.6	136
4	Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Science Signaling, 2019, 12, .	3.6	129
5	Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice. Antioxidants and Redox Signaling, 2017, 27, 1048-1066.	5.4	107
6	Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. NeuroToxicology, 2018, 64, 204-218.	3.0	106
7	Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Science Signaling, 2019, 12, .	3.6	103
8	Prokineticinâ \in promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia, 2018, 66, 2137-2157.	4.9	92
9	Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiology of Disease, 2018, 117, 82-113.	4.4	83
10	Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiology of Disease, 2016, 93, 96-114.	4.4	82
11	Involvement of c-Abl Kinase in Microglial Activation of NLRP3 Inflammasome and Impairment in Autolysosomal System. Journal of NeuroImmune Pharmacology, 2017, 12, 624-660.	4.1	65
12	Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiology of Disease, 2018, 110, 102-121.	4.4	50
13	Molecular Signatures of Neuroinflammation Induced by αSynuclein Aggregates in Microglial Cells. Frontiers in Immunology, 2020, 11, 33.	4.8	50
14	Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. Journal of Clinical Investigation, 2020, 130, 4195-4212.	8.2	50
15	α-synuclein impairs autophagosome maturation through abnormal actin stabilization. PLoS Genetics, 2021, 17, e1009359.	3.5	49
16	MitoPark transgenic mouse model recapitulates the gastrointestinal dysfunction and gut-microbiome changes of Parkinson's disease. NeuroToxicology, 2019, 75, 186-199.	3.0	29
17	Characterization and comparative analysis of a new mouse microglial cell model for studying neuroinflammatory mechanisms during neurotoxic insults. NeuroToxicology, 2018, 67, 129-140.	3.0	25
18	Rapid and Refined CD11b Magnetic Isolation of Primary Microglia with Enhanced Purity and Versatility. Journal of Visualized Experiments, 2017, , .	0.3	19

SOUVARISH SARKAR

#	Article	IF	CITATIONS
19	Cobinamide is effective for treatment of hydrogen sulfide–induced neurological sequelae in a mouse model. Annals of the New York Academy of Sciences, 2017, 1408, 61-78.	3.8	19
20	Comparative proteomic analysis highlights metabolic dysfunction in α-synucleinopathy. Npj Parkinson's Disease, 2020, 6, 40.	5.3	16
21	Chronic Manganese Exposure and the Enteric Nervous System: An <i>in Vitro</i> and Mouse <i>in Vivo</i> Study. Environmental Health Perspectives, 2021, 129, 87005.	6.0	12
22	Environmental neurotoxic pesticide exposure induces gut inflammation and enteric neuronal degeneration by impairing enteric glial mitochondrial function in pesticide models of Parkinson's disease: Potential relevance to gut-brain axis inflammation in Parkinson's disease pathogenesis. International Journal of Biochemistry and Cell Biology, 2022, 147, 106225.	2.8	11
23	Precision Medicine on the Fly: Using <i>Drosophila</i> to Decipher Gene-Environment Interactions in Parkinson's Disease. Toxicological Sciences, 2021, 182, 159-167.	3.1	8
24	Oligomerization of Lrrk controls actin severing and $\hat{l}\pm$ -synuclein neurotoxicity in vivo. Molecular Neurodegeneration, 2021, 16, 33.	10.8	6
25	Mechanism of Gene-Environment Interactions Driving Glial Activation in Parkinson's Diseases. Current Environmental Health Reports, 2021, 8, 203-211.	6.7	4
26	The role of manganese in neuroinflammation. Advances in Neurotoxicology, 2019, 3, 121-131.	1.9	3
27	The Fynâ€dependent voltageâ€gated potassium channel Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease models. FASEB Journal, 2018, 32, 553.1.	0.5	1
28	Pesticideâ€induced Mitochondrial Dysfunction Augments NLRP3 Inflammasome Signaling Pathway in Primary Microglia. FASEB Journal, 2015, 29, 777.5.	0.5	0
29	Manganese Exposure Activates NLRP3 Inflammasome Signaling and Propagates Exosomal Release of ASC in Microglial Cells. FASEB Journal, 2018, 32, 823.8.	0.5	0
30	Development of geneâ€environment interaction model in Drosophila for neurodegenerative disease: A step towards personalized medicine. FASEB Journal, 2019, 33, 813.14.	0.5	0
31	Calciumâ€activated K + channel K Ca 3.1 Plays a Proâ€inflammatory Role in αâ€Synuclein Models of Parkinson's Disease. FASEB Journal, 2019, 33, 500.20.	0.5	Ο
32	Multiplex analysis in a <i>Drosophila</i> geneâ€environment model identifies interactions among LRRK2, rotenone and αâ€synuclein. FASEB Journal, 2020, 34, 1-1.	0.5	0
33	Molecular signatures of neuroinflammation induced by αâ€synuclein aggregates in microglial cells. FASEB Journal, 2020, 34, 1-1.	0.5	0
34	A multiplex model in a <i>Drosophila</i> identifies novel geneâ€environment interactions: A step towards personalized medicine. FASEB Journal, 2022, 36, .	0.5	0