Lucia Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5928971/publications.pdf

Version: 2024-02-01

64 papers

4,435 citations

147801 31 h-index 61 g-index

67 all docs

67 docs citations

67 times ranked

5893 citing authors

#	Article	IF	Citations
1	Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 2012, 25, 661-681.	13.6	665
2	Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology, 2013, 16, 580-589.	5.1	640
3	Adaptive Resistance to the "Last Hope―Antibiotics Polymyxin B and Colistin in <i>Pseudomonas aeruginosa</i> Is Mediated by the Novel Two-Component Regulatory System ParR-ParS. Antimicrobial Agents and Chemotherapy, 2010, 54, 3372-3382.	3.2	276
4	The <i>pmrCAB</i> Operon Mediates Polymyxin Resistance in <i>Acinetobacter baumannii</i> ATCC 17978 and Clinical Isolates through Phosphoethanolamine Modification of Lipid A. Antimicrobial Agents and Chemotherapy, 2011, 55, 3743-3751.	3.2	261
5	Creeping baselines and adaptive resistance to antibiotics. Drug Resistance Updates, 2011, 14, 1-21.	14.4	163
6	Characterization of the Polymyxin B Resistome of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2013, 57, 110-119.	3.2	136
7	Inhibition of LpxC Protects Mice from Resistant Acinetobacter baumannii by Modulating Inflammation and Enhancing Phagocytosis. MBio, 2012, 3, .	4.1	126
8	Phage or foe: an insight into the impact of viral predation on microbial communities. ISME Journal, 2018, 12, 1171-1179.	9.8	124
9	The Two-Component System CprRS Senses Cationic Peptides and Triggers Adaptive Resistance in Pseudomonas aeruginosa Independently of ParRS. Antimicrobial Agents and Chemotherapy, 2012, 56, 6212-6222.	3.2	123
10	Phosphate Starvation Promotes Swarming Motility and Cytotoxicity of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2012, 78, 6762-6768.	3.1	106
11	Are Phage Lytic Proteins the Secret Weapon To Kill <i>Staphylococcus aureus</i> ?. MBio, 2018, 9, .	4.1	98
12	Role of Intracellular Proteases in the Antibiotic Resistance, Motility, and Biofilm Formation of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2012, 56, 1128-1132.	3.2	83
13	The Lon Protease Is Essential for Full Virulence in Pseudomonas aeruginosa. PLoS ONE, 2012, 7, e49123.	2.5	83
14	The Perfect Bacteriophage for Therapeutic Applications—A Quick Guide. Antibiotics, 2019, 8, 126.	3.7	83
15	Identification of Specific In Vivo-Induced (ivi) Genes in Yersinia ruckeri and Analysis of Ruckerbactin, a Catecholate Siderophore Iron Acquisition System. Applied and Environmental Microbiology, 2004, 70, 5199-5207.	3.1	82
16	Application of Bacteriophages in the Agro-Food Sector: A Long Way Toward Approval. Frontiers in Cellular and Infection Microbiology, 2018, 8, 296.	3.9	78
17	Involvement of an ATP-Dependent Protease, PA0779/AsrA, in Inducing Heat Shock in Response to Tobramycin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2011, 55, 1874-1882.	3.2	74
18	Molecular virulence mechanisms of the fish pathogen Yersinia ruckeri. Veterinary Microbiology, 2007, 125, 1-10.	1.9	66

#	Article	IF	CITATIONS
19	Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics, 2021, 10, 131.	3.7	65
20	Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS ONE, 2018, 13, e0205728.	2.5	63
21	The iron- and temperature-regulated haemolysin YhlA is a virulence factor of Yersinia ruckeri. Microbiology (United Kingdom), 2007, 153, 483-489.	1.8	58
22	Methicillin-Resistant Staphylococcus aureus in Hospitals: Latest Trends and Treatments Based on Bacteriophages. Journal of Clinical Microbiology, 2019, 57, .	3.9	58
23	Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control, 2017, 73, 1474-1482.	5.5	57
24	The Behavior of Staphylococcus aureus Dual-Species Biofilms Treated with Bacteriophage philPLA-RODI Depends on the Accompanying Microorganism. Applied and Environmental Microbiology, 2017, 83, .	3.1	52
25	Bacteriophages in the Dairy Environment: From Enemies to Allies. Antibiotics, 2017, 6, 27.	3.7	51
26	Low-level predation by lytic phage philPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Scientific Reports, 2017, 7, 40965.	3.3	51
27	Analysis of Different Parameters Affecting Diffusion, Propagation and Survival of Staphylophages in Bacterial Biofilms. Frontiers in Microbiology, 2018, 9, 2348.	3.5	43
28	A Chromosomally Located <i>traHIJKCLMN </i> Operon Encoding a Putative Type IV Secretion System Is Involved in the Virulence of <i>Yersinia ruckeri </i> Secretion Environmental Microbiology, 2009, 75, 937-945.	3.1	39
29	In Vitro andIn Vivo Studies of the Yrp1 Protease from Yersinia ruckeri andIts Role in Protective Immunity against Enteric Red MouthDisease ofSalmonids. Applied and Environmental Microbiology, 2003, 69, 7328-7335.	3.1	36
30	The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing. Journal of Biological Chemistry, 2016, 291, 1676-1691.	3.4	36
31	Isolation and analysis of a protease gene with an ABC transport system in the fish pathogen Yersinia ruckeri: insertional mutagenesis and involvement in virulence a aThe GenBank accession numbers for the sequences reported in this paper are AJ318052 (yrp1) and AJ421517 (yrpDEF and inh) Microbiology (United Kingdom), 2002, 148, 2233-2243.	1.8	36
32	Synergistic action of phage philPLA-RODI and lytic protein CHAPSH3b: a combination strategy to target Staphylococcus aureus biofilms. Npj Biofilms and Microbiomes, 2021, 7, 39.	6.4	34
33	Strategies to Encapsulate the Staphylococcus aureus Bacteriophage philPLA-RODI. Viruses, 2018, 10, 495.	3.3	33
34	Study of the Interactions Between Bacteriophage philPLA-RODI and Four Chemical Disinfectants for the Elimination of Staphylococcus aureus Contamination. Viruses, 2018, 10, 103.	3.3	33
35	Interconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 26811.	3.3	31
36	Encapsulation of the Antistaphylococcal Endolysin LysRODI in pH-Sensitive Liposomes. Antibiotics, 2020, 9, 242.	3.7	31

3

#	Article	IF	CITATIONS
37	Phage Lytic Protein LysRODI Prevents Staphylococcal Mastitis in Mice. Frontiers in Microbiology, 2020, 11, 7.	3.5	28
38	Downregulation of Autolysin-Encoding Genes by Phage-Derived Lytic Proteins Inhibits Biofilm Formation in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	27
39	Real-Time Assessment of Staphylococcus aureus Biofilm Disruption by Phage-Derived Proteins. Frontiers in Microbiology, 2017, 8, 1632.	3.5	27
40	Genes required for Lactococcus garvieae survival in a fish host. Microbiology (United Kingdom), 2007, 153, 3286-3294.	1.8	24
41	Spreading versus biomass production by colonies of the fish pathogen Flavobacterium psychrophilum: role of the nutrient concentration. International Microbiology, 2009, 12, 207-14.	2.4	24
42	Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. International Journal of Food Microbiology, 2022, 368, 109611.	4.7	21
43	Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Frontiers in Microbiology, 2019, 10, 12.	3.5	19
44	Construction and validation of a GFP-based vector for promoter expression analysis in the fish pathogen Flavobacterium psychrophilum. Gene, 2012, 497, 263-268.	2.2	18
45	Practical Method for Isolation of Phage Deletion Mutants. Methods and Protocols, 2018, 1, 6.	2.0	17
46	Lysogenization of Staphylococcus aureus RN450 by phages ï•11 and ï•80î± leads to the activation of the SigB regulon. Scientific Reports, 2018, 8, 12662.	3.3	17
47	Complete Genome Sequences of Three Pseudomonas aeruginosa Isolates with Phenotypes of Polymyxin B Adaptation and Inducible Resistance. Journal of Bacteriology, 2012, 194, 529-530.	2.2	15
48	Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails. Scientific Reports, 2022, 12, 2458.	3.3	15
49	Understanding the Mechanisms That Drive Phage Resistance in Staphylococci to Prevent Phage Therapy Failure. Viruses, 2022, 14, 1061.	3.3	15
50	Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 2013, 26, 163-163.	13.6	13
51	Characterization of Clinical MRSA Isolates from Northern Spain and Assessment of Their Susceptibility to Phage-Derived Antimicrobials. Antibiotics, 2020, 9, 447.	3.7	12
52	Developing Diagnostic and Therapeutic Approaches to Bacterial Infections for a New Era: Implications of Globalization. Antibiotics, 2020, 9, 916.	3.7	11
53	Design and Selection of Engineered Lytic Proteins With Staphylococcus aureus Decolonizing Activity. Frontiers in Microbiology, 2021, 12, 723834.	3.5	10
54	The relationship between the phageome and human health: are bacteriophages beneficial or harmful microbes?. Beneficial Microbes, 2021, 12, 107-120.	2.4	7

#	Article	IF	CITATIONS
55	Environmental pH is a key modulator of <i>Staphylococcus aureus</i> biofilm development under predation by the virulent phage philPLA-RODI. ISME Journal, 2021, 15, 245-259.	9.8	6
56	Phage therapy: unexpected drawbacks to reach hospitals. Future Virology, 2019, 14, 779-782.	1.8	6
57	Gram-Positive Pneumonia: Possibilities Offered by Phage Therapy. Antibiotics, 2021, 10, 1000.	3.7	4
58	Antibiotic Resistance due to Reduced Uptake. , 2017, , 115-130.		4
59	Preliminary Assessment of Visible, Near-Infrared, and Short-Wavelength–Infrared Spectroscopy with a Portable Instrument for the Detection of Staphylococcus aureus Biofilms on Surfaces. Journal of Food Protection, 2019, 82, 1314-1319.	1.7	3
60	Bacteriophages: The Enemies of Bad Bacteria Are Our Friends!. Frontiers for Young Minds, 2016, 4, .	0.8	2
61	Characterizing the Transcriptional Effects of Endolysin Treatment on Established Biofilms of Staphylococcus aureus. Bio-protocol, 2018, 8, e2891.	0.4	2
62	Draft Genome Sequences of the Bap-Producing Strain Staphylococcus aureus V329 and Its Derived Phage-Resistant Mutant BIM-1. Microbiology Resource Announcements, 2021, 10, e0050021.	0.6	1
63	Deletion of the amidase domain of endolysin LysRODI enhances antistaphylococcal activity in milk and during fresh cheese production. Food Microbiology, 2022, 107, 104067.	4.2	1
64	Bacteriófagos y endolisinas en la industria alimentaria. Arbor, 2020, 196, 544.	0.3	0