Vyacheslav V Filichev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5928729/publications.pdf

Version: 2024-02-01

279701 289141 62 1,955 23 40 citations g-index h-index papers 69 69 69 3240 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phosphorothioate modification improves exon-skipping of antisense oligonucleotides based on sulfonyl phosphoramidates in <i>mdx</i> mouse myotubes. Organic and Biomolecular Chemistry, 2022, 20, 3790-3797.	1.5	4
2	Small-Angle X-ray Scattering Models of APOBEC3B Catalytic Domain in a Complex with a Single-Stranded DNA Inhibitor. Viruses, 2021, 13, 290.	1.5	6
3	DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies. Beilstein Journal of Organic Chemistry, 2021, 17, 749-761.	1.3	8
4	Differential Inhibition of APOBEC3 DNAâ€Mutator Isozymes by Fluoro―and Nonâ€Fluoroâ€Substituted 2′â€Deoxyzebularine Embedded in Singleâ€Stranded DNA. ChemBioChem, 2020, 21, 1028-1035.	1.3	16
5	Heterochromatin protein $1\hat{l}\pm$ interacts with parallel RNA and DNA G-quadruplexes. Nucleic Acids Research, 2020, 48, 682-693.	6.5	522
6	The Importance of Phosphates for DNA Gâ€Quadruplex Formation: Evaluation of Zwitterionic Gâ€Rich Oligodeoxynucleotides. ChemBioChem, 2020, 21, 2455-2466.	1.3	8
7	Effects of Pressure and pH on the Physical Stability of an lâ€Motif DNA Structure. ChemPhysChem, 2019, 20, 1567-1571.	1.0	14
8	α-2′-Deoxyguanosine can switch DNA G-quadruplex topologies from antiparallel to parallel. Organic and Biomolecular Chemistry, 2019, 17, 4031-4042.	1.5	9
9	Selective inhibition of APOBEC3 enzymes by single-stranded DNAs containing 2′-deoxyzebularine. Organic and Biomolecular Chemistry, 2019, 17, 9435-9441.	1.5	23
10	Neutral and Negatively Charged Phosphate Modifications Altering Thermal Stability, Kinetics of Formation and Monovalent Ion Dependence of DNA Gâ€Quadruplexes. Chemistry - an Asian Journal, 2019, 14, 1212-1220.	1.7	13
11	Inhibiting APOBEC3 Activity with Single-Stranded DNA Containing 2′-Deoxyzebularine Analogues. Biochemistry, 2019, 58, 391-400.	1.2	29
12	NMR-based method of small changes reveals how DNA mutator APOBEC3A interacts with its single-stranded DNA substrate. Nucleic Acids Research, 2017, 45, 5602-5613.	6.5	20
13	Silencing of <i>BCR/ABL </i> Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates. Nucleic Acid Therapeutics, 2017, 27, 168-175.	2.0	9
14	Application of Cu(I)-catalyzed azide–alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA. Beilstein Journal of Organic Chemistry, 2016, 12, 1348-1360.	1.3	5
15	Gâ€Quadruplex Supramolecular Assemblies in Photochemical Upconversion. Chemistry - A European Journal, 2016, 22, 10376-10381.	1.7	15
16	Investigation of twisted intercalating nucleic acid (TINA)-modified antisense oligonucleotides for splice modulation by induced exon-skipping in vitro. RSC Advances, 2016, 6, 95169-95172.	1.7	19
17	<scp>DNA</scp> Gâ€quadruplexes show strong interaction with <scp>DNA</scp> methyltransferases <i>in vitro</i> . FEBS Letters, 2016, 590, 2870-2883.	1.3	43
18	Interdependence of pyrene interactions and tetramolecular G4-DNA assembly. Organic and Biomolecular Chemistry, 2015, 13, 3742-3748.	1.5	16

#	Article	IF	CITATIONS
19	DNA-Based Assemblies for Photochemical Upconversion. Journal of Physical Chemistry B, 2015, 119, 14045-14052.	1.2	16
20	Towards Metal-Mediated G-Quartet Analogues: 1,2,4-Triazole Nucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2015, 34, 277-288.	0.4	2
21	DNA visualization in single molecule studies carried out with optical tweezers: Covalent versus non-covalent attachment of fluorophores. Biochemical and Biophysical Research Communications, 2015, 466, 226-231.	1.0	14
22	G-Quadruplex Structures and CpG Methylation Cause Drop-Out of the Maternal Allele in Polymerase Chain Reaction Amplification of the Imprinted MEST Gene Promoter. PLoS ONE, 2014, 9, e113955.	1.1	30
23	Assembly Dependent Fluorescence Enhancing Nucleic Acids in Sequenceâ€5pecific Detection of Doubleâ€5tranded DNA. ChemPlusChem, 2014, 79, 2-2.	1.3	0
24	Assembly Dependent Fluorescence Enhancing Nucleic Acids in Sequenceâ€Specific Detection of Doubleâ€Stranded DNA. ChemPlusChem, 2014, 79, 58-66.	1.3	12
25	Helicases, G4â€DNAs, and Drug Design. ChemMedChem, 2014, 9, 2031-2034.	1.6	8
26	DNA duplex as a scaffold for a ground state complex formation between a zinc cationic porphyrin and phenylethynylpyren-1-yl. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 288, 76-81.	2.0	10
27	Molecular Engineering of Guanine-Rich Sequences: Z-DNA, DNA Triplexes, and G-Quadruplexes. Chemical Reviews, 2013, 113, 3044-3083.	23.0	166
28	Ligand assembly and chirality transfer guided by DNA modified with enantiomerically pure [2.2] paracyclophanes. RSC Advances, 2013, 3, 9373.	1.7	6
29	Cationic modified nucleic acids for use in DNA hairpins and parallel triplexes. Organic and Biomolecular Chemistry, 2011, 9, 4527.	1.5	2
30	Synthesis of βâ€Pyrrolicâ€Modified Porphyrins and Their Incorporation into DNA. Chemistry - A European Journal, 2011, 17, 6227-6238.	1.7	34
31	Triplexâ€Forming Twisted Intercalating Nucleic Acids (TINAs): Design Rules, Stabilization of Antiparallel DNA Triplexes and Inhibition of Gâ€Quartetâ€Dependent Selfâ€Association. ChemBioChem, 2011, 12, 2365-2374	. ^{1.3}	33
32	Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids. Nucleic Acids Research, 2011, 39, 2470-2481.	6.5	61
33	Significantly Enhanced DNA Thermal Stability Resulting from Porphyrin Hâ€Aggregate Formation in the Minor Groove of the Duplex. ChemBioChem, 2010, 11, 1833-1839.	1.3	25
34	Optimization of the sequence of twisted intercalating nucleic acids (TINA) forming triple helix with the polypurine tract of the proviral HIV DNA. Nucleic Acids Symposium Series, 2009, 53, 139-140.	0.3	6
35	The First Postsynthetic 5′â€⁵′ Intercalators in Triplex DNA – Solidâ€Phase Postsynthetic <i>Sonogashira<td>^{/i}ì.o</td><td>7</td></i>	^{/i} ì.o	7
36	Identification of a New G-Quadruplex Motif in the <i>KRAS</i> Promoter and Design of Pyrene-Modified G4-Decoys with Antiproliferative Activity in Pancreatic Cancer Cells. Journal of Medicinal Chemistry, 2009, 52, 564-568.	2.9	85

3

#	Article	IF	CITATIONS
37	Triplex Formation by Pyreneâ€Labelled Probes for Nucleic Acid Detection in Fluorescence Assays. ChemBioChem, 2008, 9, 791-801.	1.3	27
38	1â€; 2â€; and 4â€Ethynylpyrenes in the Structure of Twisted Intercalating Nucleic Acids: Structure, Thermal Stability, and Fluorescence Relationship. Chemistry - A European Journal, 2008, 14, 9968-9980.	1.7	54
39	Stability of <i>Hoogsteen</i> À€Type Triplexes – Electrostatic Attraction between Duplex Backbone and Triplexâ€Forming Oligonucleotide (TFO) Using an Intercalating Conjugate. Helvetica Chimica Acta, 2008, 91, 805-818.	1.0	8
40	An alternative synthesis of \hat{l}^2 -pyrrolic acetylene-substituted porphyrins. Tetrahedron Letters, 2008, 49, 5632-5635.	0.7	15
41	Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation. Nucleic Acids Research, 2008, 36, 3494-3507.	6.5	40
42	The Effect of INA $[(\langle i\rangle R\langle i\rangle)-1-\langle i\rangle O\langle i\rangle-(1-Pyrenylmethyl)Glycerol]$ Insertions on the Structure and Biological Activity of a G-Quadruplex from a Critical $\langle i\rangle Kras\langle i\rangle G$ -Rich Sequence. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1641-1643.	0.4	6
43	Stabilization of Parallel Triplexes by Twisted Intercalating Nucleic Acids (TINAs) Incorporating 1,2,3-Triazole Units and Prepared by Microwave-Accelerated Click Chemistry. Chemistry - A European Journal, 2007, 13, 6379-6386.	1.7	70
44	Synthesis of Twisted Intercalating Nucleic Acids Possessing Acridine Derivatives. Thermal Stability Studies. Bioconjugate Chemistry, 2006, 17, 950-957.	1.8	27
45	High Thermal Stability of 5′-5′-Linked Alternate Hoogsteen Triplexes at Physiological pH. Angewandte Chemie - International Edition, 2006, 45, 5311-5315.	7.2	29
46	Twisted Intercalating Nucleic Acids – Intercalator Influence on Parallel Triplex Stabilities. European Journal of Organic Chemistry, 2006, 2006, 3960-3968.	1,2	25
47	Enhanced Inhibition of Transcription Start by Targeting with 2′-OMe Pentaribonucleotides Comprising Locked Nucleic Acids and Intercalating Nucleic Acids. ChemBioChem, 2005, 6, 1181-1184.	1.3	10
48	Easily denaturing nucleic acids derived from intercalating nucleic acids: thermal stability studies, dual duplex invasion and inhibition of transcription start. Nucleic Acids Research, 2005, 33, 7129-7137.	6.5	27
49	Stable and Selective Formation of Hoogsteen-Type Triplexes and Duplexes Using Twisted Intercalating Nucleic Acids (TINA) Prepared via Postsynthetic Sonogashira Solid-Phase Coupling Reactions. Journal of the American Chemical Society, 2005, 127, 14849-14858.	6.6	95
50	Synthesis of twisted intercalating nucleic acids (TINA) possesing acridine derivatives., 2005,,.		0
51	Intercalating Nucleic Acids: The Influence of Linker Length and Intercalator Type on Their Duplex Stabilities. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 207-225.	0.4	29
52	Synthesis and incorporation of an $\hat{l}\pm$ -hexofuranosyl thymidine into oligodeoxynucleotides via its two exocyclic OH-groups. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 581-584.	1.0	3
53	Locked Nucleic Acids and Intercalating Nucleic Acids in the Design of Easily Denaturing Nucleic Acids: Thermal Stability Studies. ChemBioChem, 2004, 5, 1673-1679.	1.3	24
54	Hexofuranosyl thymidines inserted into oligodeoxynucleotides via their two exocyclic hydroxy groups. Oligo synthesis and RNase H activity. Bioorganic and Medicinal Chemistry, 2004, 12, 2843-2851.	1.4	3

#	Article	IF	CITATIONS
55	Intercalating nucleic acids: The inversion of the stereocenter in 1-O-(pyren-1-ylmethyl)glycerol from R to S. Thermal stability towards ssDNA, ssRNA and its own type of oligodeoxynucleotides. Tetrahedron Letters, 2004, 45, 4907-4910.	0.7	19
56	Intercalating nucleic acids (INAs) with insertion of N-(pyren-1-ylmethyl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol. DNA (RNA) duplex and DNA three-way junction stabilities. Organic and Biomolecular Chemistry, 2003, 1, 100-103.	1.5	35
57	Title is missing!. Helvetica Chimica Acta, 2002, 85, 2847-2855.	1.0	11
58	Synthesis of novel thymidine derivatives containing a polycyclic tetrazole linker. Tetrahedron Letters, 2002, 43, 1901-1903.	0.7	14
59	Synthesis, X-ray and conformational studies of novel tetrazole-containing macrocycles: 4,13-dioxa-1,7,8,9,17,18,19,20-octaazatricyclo[14.2.1.17,10]icosa-8,10(20),16(19),17-tetraene and 4,14-dioxa-1,7,8,9,10,18,19,20-octaazatricyclo[15.2.1.07,10]icosa-8,10,17(20),18-tetraeneâ€. Perkin Transactions II RSC. 2001 417-421.	1.1	10
60	Synthesis of $1\hat{a}\in^2$ -aza-C-nucleosides from (3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol. Tetrahedron, 2001, 57, 9163-9168.	1.0	25
61	Synthesis of an aza analogue of 2-deoxy-d-ribofuranose and its homologues. Carbohydrate Research, 2001, 333, 115-122.	1.1	40
62	1,5-Di(tetrazol-5-yl)-3-oxapentane as a substrate in the synthesis of novel heterocyclic systems. Mendeleev Communications, 1999, 9, 116-117.	0.6	5