List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5928650/publications.pdf Version: 2024-02-01

FEN RAN

#	Article	IF	CITATIONS
1	Modification of polyethersulfone membranes – A review of methods. Progress in Materials Science, 2013, 58, 76-150.	32.8	698
2	Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)–b-poly(methyl methacrylate)–b-poly(vinyl pyrrolidone). Acta Biomaterialia, 2011, 7, 3370-3381.	8.3	190
3	Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. Journal of Power Sources, 2018, 378, 499-510.	7.8	170
4	Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. Journal of Materials Chemistry A, 2021, 9, 24094-24147.	10.3	141
5	Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. Journal of Power Sources, 2017, 344, 1-10.	7.8	126
6	Biopolymer-based carboxylated chitosan hydrogel film crosslinked by HCl as gel polymer electrolyte for all-solid-sate supercapacitors. Journal of Power Sources, 2019, 426, 47-54.	7.8	122
7	Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method. Journal of Power Sources, 2017, 363, 1-8.	7.8	108
8	Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. Colloids and Surfaces B: Biointerfaces, 2012, 100, 116-125.	5.0	107
9	Design Strategies of 3D Carbonâ€Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Advanced Functional Materials, 2021, 31, 2010041.	14.9	99
10	Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor. Nano-Micro Letters, 2017, 9, 6.	27.0	93
11	Direct synthesis of heparin-like poly(ether sulfone) polymer and its blood compatibility. Acta Biomaterialia, 2013, 9, 8851-8863.	8.3	89
12	Heparin‣ike Macromolecules for the Modification of Anticoagulant Biomaterials. Macromolecular Bioscience, 2012, 12, 116-125.	4.1	88
13	Vanadium nitride for aqueous supercapacitors: a topic review. Journal of Materials Chemistry A, 2020, 8, 8218-8233.	10.3	88
14	Ultra-small vanadium nitride quantum dots embedded in porousÂcarbon as high performance electrode materials for capacitiveÂenergy storage. Journal of Power Sources, 2016, 333, 61-71.	7.8	83
15	Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review. Journal of Energy Storage, 2022, 54, 105290.	8.1	79
16	Supercapacitor Electrode Based on Nano-Vanadium Nitride Incorporated on Porous Carbon Nanospheres Derived from Ionic Amphiphilic Block Copolymers & Vanadium-Contained Ion Assembly Systems. Electrochimica Acta, 2016, 211, 469-477.	5.2	77
17	Metal–Organicâ€Frameworkâ€Derived Nanostructures as Multifaceted Electrodes in Metal–Sulfur Batteries. Advanced Materials, 2021, 33, e2008784.	21.0	67
18	Biomass Waste Derived Low Cost Activated Carbon from Carchorus Olitorius (Jute Fiber) as Sustainable and Novel Electrode Material. Journal of Energy Storage, 2020, 30, 101494.	8.1	66

#	Article	IF	CITATIONS
19	Negative electrode materials of molybdenum nitride/N-doped carbon nano-fiber via electrospinning method for high-performance supercapacitors. Electrochimica Acta, 2018, 277, 41-49.	5.2	60
20	A Novel Hierarchical Porous 3D Structured Vanadium Nitride/Carbon Membranes for High-performance Supercapacitor Negative Electrodes. Nano-Micro Letters, 2018, 10, 63.	27.0	60
21	Nano-Au@PANI core-shell nanoparticles via in-situ polymerization as electrode for supercapacitor. Journal of Alloys and Compounds, 2017, 722, 1-7.	5.5	58
22	Hemocompatibility and ultrafiltration performance of surface-functionalized polyethersulfone membrane by blending comb-like amphiphilic block copolymer. Journal of Membrane Science, 2014, 471, 319-327.	8.2	56
23	Carbon nanosphere@vanadium nitride electrode materials derived from metal-organic nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer. Electrochimica Acta, 2018, 262, 66-73.	5.2	54
24	Thermo-responsive polysulfone membranes with good anti-fouling property modified by grafting random copolymers via surface-initiated eATRP. Separation and Purification Technology, 2018, 206, 166-176.	7.9	54
25	Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor. Journal of Alloys and Compounds, 2020, 812, 152138.	5.5	53
26	Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synthetic Metals, 2015, 209, 369-376.	3.9	52
27	Modified supramolecular carboxylated chitosan as hydrogel electrolyte for quasi-solid-state supercapacitors. Journal of Power Sources, 2019, 441, 227174.	7.8	52
28	Intercalation structure of vanadium nitride nanoparticles growing on graphene surface toward high negative active material for supercapacitor utilization. Journal of Alloys and Compounds, 2019, 781, 1054-1058.	5.5	52
29	Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes. Dalton Transactions, 2018, 47, 4128-4138.	3.3	51
30	Hybrid Electrode Material of Vanadium Nitride and Carbon Fiber with Cigarette Butt/Metal Ions Wastes as the Precursor for Supercapacitors. Electrochimica Acta, 2016, 222, 1914-1921.	5.2	50
31	Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Research, 2022, 15, 1942-1948.	10.4	49
32	In situ polymerization and reduction to fabricate gold nanoparticleâ€incorporated polyaniline as supercapacitor electrode materials. Polymers for Advanced Technologies, 2018, 29, 1697-1705.	3.2	43
33	Water-soluble MOF nanoparticles modified polyethersulfone membrane for improving flux and molecular retention. Applied Surface Science, 2020, 505, 144553.	6.1	43
34	Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors. Carbohydrate Polymers, 2021, 255, 117346.	10.2	42
35	A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: Preparation, characterization and electrochemical capacitive performance. Journal of Energy Chemistry, 2014, 23, 684-693.	12.9	41
36	Toward a highly hemocompatible membrane for blood purification via a physical blend of miscible comb-like amphiphilic copolymers. Biomaterials Science, 2014, 2, 538.	5.4	41

#	Article	IF	CITATIONS
37	Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. Journal of Membrane Science, 2016, 514, 366-375.	8.2	41
38	Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone. Journal of Power Sources, 2016, 329, 104-114.	7.8	41
39	Concise N-doped Carbon Nanosheets/Vanadium Nitride Nanoparticles Materials via Intercalative Polymerization for Supercapacitors. Scientific Reports, 2018, 8, 2915.	3.3	41
40	Hybrid gel polymer electrolyte based on 1-methyl-1-Propylpyrrolidinium Bis(Trifluoromethanesulfonyl) imide for flexible and shape-variant lithium secondary batteries. Journal of Membrane Science, 2021, 621, 119018.	8.2	39
41	Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochimica Acta, 2014, 138, 367-375.	5.2	37
42	<i>In situ</i> doping of <scp>PANI</scp> nanocomposites by gold nanoparticles for highâ€performance electrochemical energy storage. Journal of Applied Polymer Science, 2017, 134, 45309.	2.6	37
43	Polymer/block copolymer blending system as the compatible precursor system for fabrication of mesoporous carbon nanofibers for supercapacitors. Journal of Power Sources, 2019, 419, 137-147.	7.8	37
44	Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors. Synthetic Metals, 2012, 162, 114-118.	3.9	35
45	Preparation of hierarchical polyaniline nanotubes based on selfâ€assembly and its electrochemical capacitance. Polymers for Advanced Technologies, 2012, 23, 1297-1301.	3.2	34
46	A dandelion-like carbon microsphere/MnO2 nanosheets composite for supercapacitors. Journal of Energy Chemistry, 2014, 23, 82-90.	12.9	34
47	Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor. Journal of Energy Chemistry, 2016, 25, 587-593.	12.9	33
48	Alkali-tolerant polymeric gel electrolyte membrane based on cross-linked carboxylated chitosan for supercapacitors. Journal of Membrane Science, 2021, 629, 119083.	8.2	33
49	Snakegourd root/Astragalus polysaccharide hydrogel preparation and application in 3D printing. International Journal of Biological Macromolecules, 2019, 121, 309-316.	7.5	32
50	Synthesized negatively charged macromolecules (NCMs) for the surface modification of anticoagulant membrane biomaterials. International Journal of Biological Macromolecules, 2013, 55, 269-275.	7.5	31
51	Cobalt-Based Double Catalytic Sites on Mesoporous Carbon as Reversible Polysulfide Catalysts for Fast-Kinetic Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51174-51185.	8.0	31
52	New comprehensions on structure superiority of asymmetric carbon membrane and controlled construction of advanced hierarchical inner-structure for high performance supercapacitors. Microporous and Mesoporous Materials, 2019, 275, 14-25.	4.4	30
53	<scp>Inâ€situ</scp> growth of ultrathin sulfur <scp>microcrystal</scp> on <scp>MXene</scp> â€based <scp>3D</scp> matrice for flexible lithium–sulfur batteries. EcoMat, 2022, 4, .	11.9	30
54	<scp>Sulfurâ€containing</scp> polymer cathode materials: From energy storage mechanism to energy density. InformaÄnÃ-Materiály, 2022, 4, .	17.3	30

#	Article	IF	CITATIONS
55	Nano vanadium nitride incorporated onto interconnected porous carbon via the method of surface-initiated electrochemical mediated ATRP and heat-treatment approach for supercapacitors. Electrochimica Acta, 2017, 258, 405-413.	5.2	29
56	Ionic liquid-derived Co3O4/carbon nano-onions composite and its enhanced performance as anode for lithium-ion batteries. Journal of Materials Science, 2017, 52, 13192-13202.	3.7	28
57	Hydrophilicity and anti-fouling performance of polyethersulfone membrane modified by grafting block glycosyl copolymers <i>via</i> surface initiated electrochemically mediated atom transfer radical polymerization. New Journal of Chemistry, 2018, 42, 2692-2701.	2.8	28
58	Assembling and Regulating of Transition Metalâ€Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. Small, 2022, 18, e2105763.	10.0	28
59	Electrospinning of fucoidan/chitosan/poly(vinyl alcohol) scaffolds for vascular tissue engineering. Fibers and Polymers, 2017, 18, 922-932.	2.1	26
60	Synthesis and electrochemical properties of hollow polyaniline microspheres by a sulfonated polystyrene template. Journal of Applied Polymer Science, 2013, 127, 1544-1549.	2.6	25
61	A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers. Materials Science and Engineering C, 2014, 37, 68-75.	7.3	25
62	Dulseâ€derived porous carbon–polyaniline nanocomposite electrode for highâ€performance supercapacitors. Journal of Applied Polymer Science, 2018, 135, 45776.	2.6	25
63	All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte. Energy Storage Materials, 2021, 37, 587-597.	18.0	25
64	Preparation of nano-PANI@MnO2 by surface initiated polymerization method using as a nano-tubular electrode material: The amount effect of aniline on the microstructure and electrochemical performance. Journal of Energy Chemistry, 2015, 24, 388-393.	12.9	24
65	Insights into the surface property and blood compatibility of polyethersulfone/polyvinylpyrrolidone composite membranes: toward high-performance hemodialyzer. Polymers for Advanced Technologies, 2014, 25, 851-860.	3.2	23
66	Hollow Carbon Microspheres/MnO2 Nanosheets Composites: Hydrothermal Synthesis and Electrochemical Behaviors. Nano-Micro Letters, 2015, 7, 59-67.	27.0	23
67	Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: Effect of thermal treatment temperature. Journal of Materials Research, 2018, 33, 1120-1130.	2.6	22
68	Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5, 87077-87083.	3.6	21
69	Energy Storage Mechanism of Vanadium Nitride via Intercalating Different Atomic Radius for Expanding Interplanar Spacing. Energy and Environmental Materials, 2022, 5, 565-571.	12.8	21
70	Visualizing Nucleation and Growth Process of Vanadiumâ€Supramolecular Nanoribbons Selfâ€Assembled by Rapid Cooling Method towards Highâ€Capacity Vanadium Nitride Anode Materials. Advanced Energy Materials, 2022, 12, .	19.5	21
71	Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode. Chinese Chemical Letters, 2011, 22, 964-968.	9.0	20
72	New amphiphilic block copolymer-modified electrodes for supercapacitors. New Journal of Chemistry, 2018, 42, 1290-1299.	2.8	20

#	Article	IF	CITATIONS
73	Synthesis of ultra-small gold nanoparticles decorated onto NiO nanobelts and their high electrochemical performance. Dalton Transactions, 2018, 47, 8078-8086.	3.3	20
74	Vanadium nitride with surface single specie oxide via vanadium-organic frameworks precursor. Journal of Power Sources, 2020, 450, 227687.	7.8	20
75	Comparison of surface segregation and anticoagulant property in block copolymer blended evaporation and phase inversion membranes. Surface and Interface Analysis, 2012, 44, 819-824.	1.8	19
76	Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes. Langmuir, 2016, 32, 4297-4304.	3.5	19
77	Hydrophilicity and anti-fouling modification of polyethersulfone membrane by grafting copolymer chains via surface initiated electrochemically mediated atom transfer radical polymerization. New Journal of Chemistry, 2017, 41, 9918-9930.	2.8	19
78	Synthesis of amphiphilic tri-block copolymer poly(vinylpyrrolidone)-b-poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Chemical Letters, 2011, 22, 370-373.	Tf 50 547 9.0	Td (methad 18
79	Toward interconnected hierarchical porous structure via chemical depositing organic nano-polyaniline on inorganic carbon scaffold for supercapacitor. Synthetic Metals, 2015, 199, 205-213.	3.9	18
80	Cistanche polysaccharide (CDPS)/polylactic acid (PLA) scaffolds based coaxial electrospinning for vascular tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 38-46.	3.4	18
81	Interconnected porous composites electrode materials of Carbon@Vanadium nitride by directly absorbing VO3 Electrochimica Acta, 2019, 306, 113-121.	5.2	18
82	Grafting copolymer of thermo-responsive and polysaccharide chains for surface modification of high performance membrane. Separation and Purification Technology, 2020, 240, 116585.	7.9	18
83	A bird nest-like manganese dioxide and its application as electrode in supercapacitors. Journal of Energy Chemistry, 2013, 22, 928-934.	12.9	17
84	Well-Dispersed Vanadium Nitride on Porous Carbon Networks Derived from Block Copolymer of PAN- <i>b</i> -PDMC- <i>b</i> -PAN Absorbed with Ammonium Metavanadate for Energy Storage Application. Journal of Physical Chemistry C, 2018, 122, 143-149.	3.1	16
85	Electrolyte-Philic Electrode Material with a Functional Polymer Brush. ACS Applied Materials & Interfaces, 2019, 11, 16087-16095.	8.0	16
86	A new approach for membrane modification based on electrochemically mediated living polymerization and self-assembly of N-tert-butyl amide- and β-cyclodextrin-involved macromolecules for blood purification. Materials Science and Engineering C, 2019, 95, 122-133.	7.3	16
87	A effective approach for surface modification of polymer membrane via SI-eATRP in an electrochemical cell with a three electrode system. Surfaces and Interfaces, 2017, 8, 119-126.	3.0	15
88	Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes. Separation and Purification Technology, 2021, 254, 117584.	7.9	15
89	Facile preparation of porous nickel oxide membrane for flexible supercapacitors electrode via phase-separation method of polymer. Materials Research Bulletin, 2018, 103, 25-31.	5.2	14
90	Dual High-Conductivity Networks <i>via</i> Importing a Polymeric Gel Electrolyte into the Electrode Bulk. ACS Applied Materials & Interfaces, 2020, 12, 41239-41249.	8.0	14

#	Article	IF	CITATIONS
91	Bacterial cellulose-derived micro/mesoporous carbon anode materials controlled by poly(methyl) Tj ETQq1 1 0.784	-314 rgBT	/Overlock
92	Fabrication and cytocompatibility evaluation for blood-compatible polyethersulfone membrane modified by a synthesized poly (vinyl pyrrolidone)- <i>block</i> -poly (acrylate- <i>graft</i> -poly(methyl) Tj ETQqO	0,0 rgBT /(3.2	Overlock 1(12
	591-596.		
93	copolymer for use as a super-high flexible and high-performance supercapacitor. Sustainable Energy and Fuels, 2017, 1, 1074-1081.	4.9	12
94	High rate capability and long cycle-life of nickel oxide membrane electrode incorporated with nickel and coated with carbon layer via in-situ supporting of engineering plastic for energy storage application. Journal of Alloys and Compounds, 2017, 710, 72-79.	5.5	12
95	High performance electrode of few-layer-carbon@bulk-carbon synthesized via controlling diffusion depth from liquid phase to solid phase for supercapacitors. Journal of Energy Storage, 2020, 32, 101672.	8.1	12
96	High rejection performance ultrafiltration membrane with ultrathin dense layer fabricated by the movement and dissolution of metal–organic frameworks. New Journal of Chemistry, 2020, 44, 13745-13754.	2.8	12
97	Flexible, twistable and plied electrode of stainless steel Cables@Nickel–Cobalt oxide with high electrochemical performance for wearable electronic textiles. Electrochimica Acta, 2020, 348, 136312.	5.2	12
98	Straightforward Solution Polymerization Synthesis of Porous Carbon@Gold Nanoparticles Electrode for High-Performance Supercapacitor. Journal of Energy Storage, 2021, 33, 102041.	8.1	12
99	Composite V3S4@rGO nanowires as a high-performance anode material for lithium-/sodium-ion batteries. lonics, 2021, 27, 5067-5077.	2.4	12
100	Bionic design for anticoagulant surface via synthesized biological macromolecules with heparin-like chains. RSC Advances, 2015, 5, 58032-58040.	3.6	11
101	Transferring Electrochemically Active Nanomaterials into a Flexible Membrane Electrode via Slow Phase Separation Method Induced by Water Vapor. ACS Sustainable Chemistry and Engineering, 2019, 7, 4295-4306.	6.7	11
102	Ionic liquid derived Co3O4/Nitrogen doped carbon composite as anode of lithium ion batteries with enhanced rate performance and cycle stability. Journal of Materials Science: Materials in Electronics, 2019, 30, 6148-6156.	2.2	11
103	New cathode material of NiCo2Crx-OH (x=0, 1, 1.5, 2.0) and anode material of one-off chopsticks derived carbon for high performance supercapacitor. Journal of Alloys and Compounds, 2021, 851, 156792.	5.5	11
104	3D layered nanostructure of vanadium nitrides quantum Dots@Graphene anode materials via In-Situ redox reaction strategy. Chemical Engineering Journal, 2021, 417, 129267.	12.7	11
105	Mesoporous carbons for supercapacitors obtained by the pyrolysis of block copolymers. New Carbon Materials, 2015, 30, 302-309.	6.1	10
106	Modification of a polyethersulfone membrane with a block copolymer brush of poly(2-methacryloyloxyethyl phosphorylcholine- <i>co</i> polypeptide chain of Arg–Glu–Asp–Val. RSC Advances, 2019, 9, 25274-25284.	3.6	10
107	Optical characteristics of (Eu3+,Nd3+) co-doped leadfluorosilicate glasses for enhanced photonic device applications. Journal of Luminescence, 2020, 223, 117210.	3.1	10
108	Co ₃ O ₄ /carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance. International Journal of Materials Research, 2018, 109, 873-879.	0.3	9

#	Article	IF	CITATIONS
109	Whole-polymers electrode membrane based on the interfacial polymerization and intermacromolecular force between polyaniline and polyethersulfone for flexible supercapacitors. Electrochimica Acta, 2019, 318, 130-141.	5.2	9
110	Bionic design for surface optimization combining hydrophilic and negative charged biological macromolecules. International Journal of Biological Macromolecules, 2014, 67, 260-269.	7.5	8
111	Nitrogen doped porous onion carbon derived from ionic liquids as the anode materials for lithium ion batteries with high performance. Journal of Electroanalytical Chemistry, 2018, 827, 167-174.	3.8	8
112	The surface capacitance behavior and its contribution to the excellent performance of cobalt ferrite/carbon anode in lithium storage. Journal of Materials Science: Materials in Electronics, 2019, 30, 12659-12668.	2.2	8
113	Study on the voltage drop of vanadium nitride/carbon composites derived from the pectin/VCl ₃ membrane as a supercapacitor anode material. New Journal of Chemistry, 2020, 44, 6791-6798.	2.8	8
114	Wettability improvement of vanadium nitride/carbon electrode nanomaterial by electrostatic absorption of hydrophilic poly (allylamine hydrochloride). Applied Surface Science, 2020, 525, 146619.	6.1	8
115	Constructing Functional Ionic Membrane Surface by Electrochemically Mediated Atom Transfer Radical Polymerization. International Journal of Polymer Science, 2016, 2016, 1-9.	2.7	7
116	Preparation of chitosan/pumpkin polysaccharide hydrogel for potential application in drug delivery and tissue engineering. Journal of Porous Materials, 2017, 24, 497-506.	2.6	7
117	MoO ₂ /Mo ₂ N hybrid nanobelts doped with gold nanoparticles and their enhanced supercapacitive behavior. New Journal of Chemistry, 2018, 42, 17895-17901.	2.8	7
118	Ingeniously designing anode material of Ni3S2/MnS2@Carbon nanocomposite with a wide potential window of 1.3AV. Electrochimica Acta, 2021, 365, 137386.	5.2	7
119	Conductive 3D networks in a 2D layer for high performance ultrafiltration membrane with high flux-retention and robust cyclic stability. Journal of Membrane Science, 2021, 640, 119781.	8.2	7
120	3D juniperus sabina-like Ni/Co metal-organic framework as an enhanced electrode material for supercapacitors. Journal of Solid State Chemistry, 2022, 310, 123056.	2.9	7
121	Reducible, recyclable and reusable (3R) hydrogel electrolyte membrane based on Physical&Chemical Bi-networks and reversible sol-gel transition. Renewable Energy, 2022, 194, 80-88.	8.9	7
122	Preparation of Co3O4/nitrogen-doped carbon composite by in situ solvothermal with ionic liquid and its electrochemical performance as lithium-ion battery anode. Ionics, 2019, 25, 475-482.	2.4	6
123	Hydrated halide clusters on electrode materials for aqueous supercapacitor. Journal of Power Sources, 2021, 491, 229612.	7.8	6
124	Oneâ€pot synthesized poly(vinyl pyrrolidoneâ€ <i>co</i> â€methyl methacrylateâ€ <i>co</i> â€acrylic acid) blended with poly(ether sulfone) to prepare bloodâ€compatible membranes. Journal of Applied Polymer Science, 2013, 130, 4284-4298.	d 2.6	5
125	Polyaniline-Based Composites and Nanocomposites. , 2018, , 175-208.		5
126	Surfactant induced self-assembly to prepare a vanadium nitride/N,S co-doped carbon high-capacitance anode material. Chemical Communications, 2021, 57, 10246-10249.	4.1	5

#	Article	IF	CITATIONS
127	Fabrication and properties of coral-like Ni/Mn-MOFs as electrode materials for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 13430-13439.	2.2	5
128	A kind of injectable Angelica sinensis polysaccharide(ASP)/hydroxyapatite (HAp) material for bone tissue engineering promoting vascularization, hematopoiesis, and osteogenesis in mice. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 205-211.	3.4	4
129	Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 28480-28493.	2.2	4
130	Engineering MOFsâ€Derived Nanoarchitectures with Efficient Polysulfides Catalytic Sites for Advanced Li–S Batteries. Advanced Materials Technologies, 2023, 8, .	5.8	4
131	Hydrothermal Synthesis and Electrochemical Measurements of Interconnected Porous Carbon/MnO ₂ Composites. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 881-890.	4.9	3
132	A flexible membrane electrode with an electrolyte-affinity surface for energy storage: effects of amphiphilic block copolymers and membrane thickness. Sustainable Energy and Fuels, 2018, 2, 1844-1854.	4.9	3
133	A novel polysaccharide-grafted gold nanoparticles synthesized via carboxyl-trithiocarbonates for modification of separation membrane. Journal of Materials Research, 2021, 36, 925-937.	2.6	3
134	Polygonatum polysaccharide modified montmorillonite/chitosan/glycerophosphate composite hydrogel for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1176-1187.	3.4	3
135	Synthesis, Characterization, and Electrochemical Properties of Mn ₃ O ₄ /Cr ₂ O ₃ Composite. Advanced Materials Research, 0, 463-464, 555-559.	0.3	2
136	Hierarchical porous nanofibers of carbon@nickel oxide nanoparticles derived from polymer/block copolymer system. Chinese Chemical Letters, 2020, 31, 2202-2206.	9.0	2
137	Fundamental Triangular Interaction of Electron Trajectory Deviation and P–N Junction to Promote Redox Reactions for the High-Energy-Density Electrode. ACS Applied Materials & Interfaces, 2020, 12, 29404-29413.	8.0	2
138	Nanoparticles of Iron Nitride Encapsulated in Nitrogenâ€Doped Carbon Bulk Derived from Polyaniline/Fe ₂ O ₃ Blends and Its Electrochemical Performance. Particle and Particle Systems Characterization, 2020, 37, 2000132.	2.3	2
139	Iron-doped carbon electrode materials derived from polyethersulfone. Journal of Energy Storage, 2021, 33, 102099.	8.1	2
140	THE CATIONIC POLYMERIZATION OF ISOBUTYLENE BY GRAFTING FROM PVAc AND ITS COPOLYMER. Acta Polymerica Sinica, 2006, 006, 467-473.	0.0	2
141	Preparation and Properties of Guiqi Polysaccharides/Chitosan/Alginate Composite Hydrogel Microspheres. Journal of Renewable Materials, 2019, 7, 1321-1332.	2.2	2
142	Visualizing Nucleation and Growth Process of Vanadiumâ€Supramolecular Nanoribbons Selfâ€Assembled by Rapid Cooling Method towards Highâ€Capacity Vanadium Nitride Anode Materials (Adv. Energy Mater.) Tj ETO	Qq 0 9050 rg	BT2/Overlock
143	Pollution Analysis and Control of Production Process in Metal Mine. Advanced Materials Research, 2012, 524-527, 653-657.	0.3	1

#	Article	IF	CITATIONS
145	Polyethersulfone fiber. , 2019, , 245-288.		1
146	Polyethersulfone Membrane. , 2015, , 1-2.		1
147	N-doped hollow porous carbon microspheres with highÂrate performance as anode for sodium-ion batteries. Journal of Materials Science: Materials in Electronics, 2022, 33, 7913-7922.	2.2	1
148	The Analysis of Environmental Safety in Preparing Superfine Powder. Advanced Materials Research, 2012, 518-523, 1040-1044.	0.3	0
149	The Preparation of Size-Controlled Antimony Nanoparticles by Electrochemical Method. Key Engineering Materials, 0, 562-565, 716-720.	0.4	0
150	The unique morphology role of thorn surface in determining electrochemical performance of polyaniline nanoâ€fibers via oneâ€step method. Journal of Applied Polymer Science, 2015, 132, .	2.6	0
151	Facile preparation of Co@Co ₃ O ₄ @Nitrogen doped carbon composite from ionic liquid as anode material for high performance lithium-ion batteries. Materials Science-Poland, 2020, 38, 601-612.	1.0	0
152	Rational ratio of quinoid imine to benzenoid amine via in situ doping with gold nanoparticles for electrochemically activation of polyaniline. Journal of Materials Science: Materials in Electronics, 2022, 33, 2138-2151.	2.2	0
153	Strip-like Co-based metal–organic framework as electrode material for supercapacitors. Journal of Materials Science: Materials in Electronics. 2022. 33. 8256-8269.	2.2	0