
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5928607/publications.pdf Version: 2024-02-01



PASMUS O RAK

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Frontiers in Genome Editing, 2022, 4, 793010.                                                                                                              | 2.7  | 2         |
| 2  | TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARSâ€CoVâ€2 infection. EMBO Journal, 2022, 41, e109622.                                                                        | 3.5  | 46        |
| 3  | A truncated reverse transcriptase enhances prime editing by split AAV vectors. Molecular Therapy, 2022, 30, 2942-2951.                                                                                                                   | 3.7  | 37        |
| 4  | Genome editing of donor-derived T-cells to generate allogenic chimeric antigen receptor-modified T<br>cells: Optimizing αβ T cell-depleted haploidentical hematopoietic stem cell transplantation.<br>Haematologica, 2021, 106, 847-858. | 1.7  | 46        |
| 5  | Targeted Knockout of the Vegfa Gene in the Retina by Subretinal Injection of RNP Complexes<br>Containing Cas9 Protein and Modified sgRNAs. Molecular Therapy, 2021, 29, 191-207.                                                         | 3.7  | 24        |
| 6  | Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived<br>hematopoietic stem and progenitor cells. Nature Medicine, 2021, 27, 677-687.                                                          | 15.2 | 51        |
| 7  | Development of β-globin gene correction in human hematopoietic stem cells as a potential durable<br>treatment for sickle cell disease. Science Translational Medicine, 2021, 13, .                                                       | 5.8  | 82        |
| 8  | Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Research, 2021, 31, 2120-2130.                                                                                                                   | 2.4  | 29        |
| 9  | Ascorbic acid supports ex vivo generation of plasmacytoid dendritic cells from circulating hematopoietic stem cells. ELife, 2021, 10, .                                                                                                  | 2.8  | 8         |
| 10 | STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.                                                                                                                                          | 7.0  | 82        |
| 11 | Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I.<br>Nature Communications, 2019, 10, 4045.                                                                                              | 5.8  | 88        |
| 12 | CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells. IScience, 2019, 15, 524-535.                                                                                                                        | 1.9  | 27        |
| 13 | The Potential of CRISPR/Cas9 in Hematotherapy. Stem Cells and Development, 2019, 28, 710-711.                                                                                                                                            | 1.1  | 0         |
| 14 | Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP<br>and AAV6 Donor-Mediated Homologous Recombination. Cell Stem Cell, 2019, 24, 821-828.e5.                                            | 5.2  | 135       |
| 15 | Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.<br>Methods in Molecular Biology, 2019, 1961, 127-134.                                                                                  | 0.4  | 21        |
| 16 | Therapeutic gene editing in haematological disorders with <scp>CRISPR</scp> /Cas9. British Journal of<br>Haematology, 2019, 185, 821-835.                                                                                                | 1.2  | 32        |
| 17 | CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nature Protocols, 2018, 13, 358-376.                                                                                                                                       | 5.5  | 240       |
| 18 | Time-Restricted PiggyBac DNA Transposition by Transposase Protein Delivery Using Lentivirus-Derived<br>Nanoparticles. Molecular Therapy - Nucleic Acids, 2018, 11, 253-262.                                                              | 2.3  | 12        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Enhanced Tailored MicroRNA Sponge Activity of RNA Pol II-Transcribed TuD Hairpins Relative to<br>Ectopically Expressed ciRS7-Derived circRNAs. Molecular Therapy - Nucleic Acids, 2018, 13, 365-375. | 2.3  | 10        |
| 20 | Interferon priming is essential for human CD34+ cell-derived plasmacytoid dendritic cell maturation and function. Nature Communications, 2018, 9, 3525.                                              | 5.8  | 37        |
| 21 | A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nature Medicine, 2018, 24, 1216-1224.          | 15.2 | 573       |
| 22 | Global Transcriptional Response to CRISPR/Cas9-AAV6-Based Genome Editing in CD34+ Hematopoietic<br>Stem and Progenitor Cells. Molecular Therapy, 2018, 26, 2431-2442.                                | 3.7  | 97        |
| 23 | Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein.<br>Molecular Therapy - Nucleic Acids, 2018, 12, 672-683.                                        | 2.3  | 22        |
| 24 | Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting.<br>Molecular Therapy - Nucleic Acids, 2018, 12, 89-104.                                            | 2.3  | 84        |
| 25 | Gene Editing on Center Stage. Trends in Genetics, 2018, 34, 600-611.                                                                                                                                 | 2.9  | 117       |
| 26 | Improved microRNA suppression by WPRE-linked tough decoy microRNA sponges. Rna, 2017, 23, 1247-1258.                                                                                                 | 1.6  | 11        |
| 27 | CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors. Cell Reports, 2017, 20, 750-756.                                                                                        | 2.9  | 98        |
| 28 | Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. ELife, 2017, 6, .                                                                       | 2.8  | 94        |
| 29 | 43. CRISPR/Cas9 and rAAV6-Mediated Targeted Integration at the CCR5 Locus in Hematopoietic Stem and Progenitor Cells. Molecular Therapy, 2016, 24, S19.                                              | 3.7  | 0         |
| 30 | 127. Lentiviral Protein Transduction for Tailored Genome Editing and Site-Directed Gene Insertion.<br>Molecular Therapy, 2016, 24, S52.                                                              | 3.7  | 0         |
| 31 | 533. Genomic Excision of PiggyBac Transposon Cassettes by Lentiviral Protein Transduction of<br>GagPol-Fused, Excision-Only PiggyBac Transposase. Molecular Therapy, 2016, 24, S213.                 | 3.7  | 0         |
| 32 | 39. FACS-Based Enrichment of a Highly Purified HBB-Targeted Hematopoietic Stem and Progenitor Cell<br>Population Using rAAV6 and CRISPR/Cas9. Molecular Therapy, 2016, 24, S17.                      | 3.7  | 0         |
| 33 | Genome editing by homologous recombination of human hematopoietic stem cells. Experimental<br>Hematology, 2016, 44, S26.                                                                             | 0.2  | 0         |
| 34 | CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539, 384-389.                                                                                                  | 13.7 | 709       |
| 35 | Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science, 2016, 351, 1454-1458.                                                                                              | 6.0  | 880       |
| 36 | Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.<br>Nature Communications, 2016, 7, 10680.                                                            | 5.8  | 169       |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Overexpression of microRNA-155 increases IL-21 mediated STAT3 signaling and IL-21 production in systemic lupus erythematosus. Arthritis Research and Therapy, 2015, 17, 154.                                   | 1.6 | 52        |
| 38 | Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature<br>Biotechnology, 2015, 33, 985-989.                                                                           | 9.4 | 882       |
| 39 | DNA transposition by protein transduction of the <i>piggyBac</i> transposase from lentiviral Gag precursors. Nucleic Acids Research, 2014, 42, e28-e28.                                                        | 6.5 | 28        |
| 40 | <scp>miRNA</scp> Âsponges:ÂsoakingÂupÂ <scp>miRNAs</scp> for regulation of gene expression. Wiley<br>Interdisciplinary Reviews RNA, 2014, 5, 317-333.                                                          | 3.2 | 199       |
| 41 | Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.<br>ELife, 2014, 3, e01911.                                                                               | 2.8 | 80        |
| 42 | Potent microRNA suppression by RNA Pol II-transcribed â€~Tough Decoy' inhibitors. Rna, 2013, 19, 280-293.                                                                                                      | 1.6 | 71        |
| 43 | Managing MicroRNAs with Vector-Encoded Decoy-Type Inhibitors. Molecular Therapy, 2013, 21, 1478-1485.                                                                                                          | 3.7 | 56        |
| 44 | Suppression of microRNAs by dual-targeting and clustered Tough Decoy inhibitors. RNA Biology, 2013, 10, 406-414.                                                                                               | 1.5 | 40        |
| 45 | A lentiviral vectorâ€based genetic sensor system for comparative analysis of permeability and activity of<br>vitamin D3 analogues in xenotransplanted human skin. Experimental Dermatology, 2013, 22, 178-183. | 1.4 | 4         |
| 46 | IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4571-80.               | 3.3 | 285       |
| 47 | Efficient Sleeping Beauty DNA Transposition From DNA Minicircles. Molecular Therapy - Nucleic Acids, 2013, 2, e74.                                                                                             | 2.3 | 27        |
| 48 | Inhibition of p53-Dependent, but Not p53-Independent, Cell Death by U19 Protein from Human<br>Herpesvirus 6B. PLoS ONE, 2013, 8, e59223.                                                                       | 1.1 | 7         |
| 49 | Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes.<br>Cytokine, 2012, 60, 741-748.                                                                               | 1.4 | 96        |
| 50 | Lentiviral vectors for cutaneous RNA managing. Experimental Dermatology, 2012, 21, 162-170.                                                                                                                    | 1.4 | 7         |
| 51 | The Impact of cHS4 Insulators on DNA Transposon Vector Mobilization and Silencing in Retinal Pigment Epithelium Cells. PLoS ONE, 2012, 7, e48421.                                                              | 1.1 | 22        |
| 52 | Targeting of human interleukin-12B by small hairpin RNAs in xenografted psoriatic skin. BMC<br>Dermatology, 2011, 11, 5.                                                                                       | 2.1 | 20        |
| 53 | A Sleeping Beauty DNA transposon-based genetic sensor for functional screening of vitamin D3 analogues. BMC Biotechnology, 2011, 11, 33.                                                                       | 1.7 | 10        |
| 54 | Mobilization of DNA transposable elements from lentiviral vectors. Mobile Genetic Elements, 2011, 1,<br>139-144.                                                                                               | 1.8 | 5         |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparative Genomic Integration Profiling of Sleeping Beauty Transposons Mobilized With High<br>Efficacy From Integrase-defective Lentiviral Vectors in Primary Human Cells. Molecular Therapy, 2011,<br>19, 1499-1510. | 3.7 | 73        |
| 56 | Regulation of cytokines by small RNAs during skin inflammation. Journal of Biomedical Science, 2010, 17, 53.                                                                                                            | 2.6 | 39        |
| 57 | Therapeutic Genome Editing in Human Hematopoietic Stem and Progenitor Cells. , 0, , 301-312.                                                                                                                            |     | Ο         |