
Ksenia N Sorokina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5928202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of biodiesel and succinic acid from the biomass of the microalga Micractinium sp. IC-44. Bioresource Technology, 2020, 317, 124026.	9.6	23
2	Direct Conversion of Microalgae Biomass to Formic Acid under an Air Atmosphere with Soluble and Solid Mo–V–P Heteropoly Acid Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 18947-18956.	6.7	20
3	Application of Bacterial Thermostable Lipolytic Enzymes in the Modern Biotechnological Processes: A Review. Catalysis in Industry, 2019, 11, 168-178.	0.7	10
4	Production of Microalgal Biomass with High Lipid Content and Their Catalytic Processing Into Biodiesel: a Review. Catalysis in Industry, 2019, 11, 349-359.	0.7	12
5	Cloning, expression and characterization of the esterase estUT1 from Ureibacillus thermosphaericus which belongs to a new lipase family XVIII. Extremophiles, 2018, 22, 271-285.	2.3	44
6	Screening and comparative metabolic profiling of high lipid content microalgae strains for application in wastewater treatment. Bioresource Technology, 2018, 250, 538-547.	9.6	57
7	Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization. AMB Express, 2018, 8, 168.	3.0	11
8	Preparation of Stable Cross-Linked Enzyme Aggregates (CLEAs) of a Ureibacillus thermosphaericus Esterase for Application in Malathion Removal from Wastewater. Catalysts, 2018, 8, 154.	3.5	22
9	Enzymatic interesterification of sunflower oil and hydrogenated soybean oil with the immobilized bacterial recombinant lipase from Geobacillus stearothermophilus G3. Catalysis in Industry, 2017, 9, 62-70.	0.7	8
10	Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5â€HMF and Ethanol. ChemSusChem, 2017, 10, 562-574.	6.8	28
11	New methods for the one-pot processing of polysaccharide components (cellulose and) Tj ETQq1 1 0.784314 rgE the biotechnological conversion of poly- and monosaccharides of biomass. Catalysis in Industry, 2017, 9, 270-276.	8T /Overloo 0.7	ck 10 Tf 50 3 8
12	New methods for the one-pot processing of polysaccharide components (cellulose and) Tj ETQq0 0 0 rgBT /Overle approaches to the conversion of polysaccharides and monosaccharides into the valuable industrial chemicals. Catalysis in Industry, 2017, 9, 264-269.	ock 10 Tf 5 0.7	50 312 Td (h 6
13	New methods for the one-pot processing of polysaccharide components (cellulose and) Tj ETQq1 1 0.784314 rgE activation. Catalysis in Industry, 2016, 8, 176-186.	BT /Overloo 0.7	ck 10 Tf 50 2 20
14	Prospects for application of enzymatic interesterification of oils in the production of modified fats. Catalysis in Industry, 2016, 8, 348-353.	0.7	6
15	Application of the immobilized bacterial recombinant lipase from Geobacillus stearothermophilus G3 for the production of fatty acid methyl esters. Catalysis in Industry, 2016, 8, 187-193.	0.7	13
16	Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Research, 2015, 12, 368-376.	4.6	47
17	Research on the biodiversity of Western Siberia microalgae for third-generation biofuel production processes. Russian Journal of Genetics: Applied Research, 2013, 3, 487-492.	0.4	3
18	Potential of microalgae as a source of bioenergy. Catalysis in Industry, 2012, 4, 202-208.	0.7	15

#	Article	IF	CITATIONS
19	Evaluation of magnetic resonance imaging characteristics of new nitroxyl radicals on the model of RLS lymphoma. Bulletin of Experimental Biology and Medicine, 2007, 143, 240-243.	0.8	2
20	Imidazol-4-yl 2-Imidazoline Nitroxide Radicals, a New Class of Promising Contrast Agents for Magnetic Resonance Imaging. Doklady Chemistry, 2005, 404, 171-173.	0.9	12