
Alexandra Brand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5927690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfabrication and its use in investigating fungal biology. Molecular Microbiology, 2022, 117, 569-577.	1.2	10
2	Crosstalk between calcineurin and the cell wall integrity pathways prevents chitin overexpression in Candida albicans. Journal of Cell Science, 2021, , .	1.2	8
3	Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans. MBio, 2020, 11, .	1.8	2
4	Multi trace element profiling in pathogenic and non-pathogenic fungi. Fungal Biology, 2020, 124, 516-524.	1.1	6
5	The power of discussion: Support for women at the fungal Gordon Research Conference. Fungal Genetics and Biology, 2018, 121, 65-67.	0.9	2
6	A conserved fungal hub protein involved in adhesion and drug resistance in the human pathogen Candida albicans. Cell Surface, 2018, 4, 10-19.	1.5	6
7	Effect of the Novel Antifungal Drug F901318 (Olorofim) on Growth and Viability of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	65
8	Thigmo Responses: The Fungal Sense of Touch. Microbiology Spectrum, 2017, 5, .	1.2	20
9	Thigmo Responses: The Fungal Sense of Touch. , 2017, , 487-507.		0
10	High frame-rate resolution of cell division during Candida albicans filamentation. Fungal Genetics and Biology, 2016, 88, 54-58.	0.9	12
11	The Candida albicans Exocyst Subunit Sec6 Contributes to Cell Wall Integrity and Is a Determinant of Hyphal Branching. Eukaryotic Cell, 2015, 14, 684-697.	3.4	12
12	Generation of living cell arrays for atomic force microscopy studies. Nature Protocols, 2015, 10, 199-204.	5.5	55
13	Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance. MBio, 2015, 6, e00986.	1.8	169
14	Contact-induced apical asymmetry drives the thigmotropic responses of <i>Candida albicans</i> hyphae. Cellular Microbiology, 2015, 17, 342-354.	1.1	56
15	Multiparametric imaging of adhesive nanodomains at the surface of Candida albicans by atomic force microscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 57-65.	1.7	45
16	Cdc42 GTPase dynamics control directional growth responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 811-816.	3.3	38
17	Rax2 is important for directional establishment of growth sites, but not for reorientation of growth axes, during Candida albicans hyphal morphogenesis. Fungal Genetics and Biology, 2013, 56, 116-124.	0.9	5
18	Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence. International Journal of Microbiology, 2012, 2012, 1-11.	0.9	135

Alexandra Brand

#	Article	IF	CITATIONS
19	Tropic Orientation Responses of Pathogenic Fungi. Topics in Current Genetics, 2012, , 21-41.	0.7	14
20	Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cellular Microbiology, 2012, 14, 1319-1335.	1.1	274
21	Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis. Eukaryotic Cell, 2011, 10, 803-819.	3.4	97
22	Fig1 Facilitates Calcium Influx and Localizes to Membranes Destined To Undergo Fusion during Mating in Candida albicans. Eukaryotic Cell, 2011, 10, 435-444.	3.4	37
23	An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast, 2010, 27, 673-684.	0.8	69
24	A Multifunctional Mannosyltransferase Family in Candida albicans Determines Cell Wall Mannan Structure and Host-Fungus Interactions. Journal of Biological Chemistry, 2010, 285, 12087-12095.	1.6	106
25	Calcium homeostasis is required for contactâ€dependent helical and sinusoidal tip growth in <i>Candida albicans</i> hyphae. Molecular Microbiology, 2009, 71, 1155-1164.	1.2	60
26	Mechanisms of hypha orientation of fungi. Current Opinion in Microbiology, 2009, 12, 350-357.	2.3	128
27	Cell wall glycans and soluble factors determine the interactions between the hyphae of <i>Candida albicans</i> and <i>Pseudomonas aeruginosa</i> . FEMS Microbiology Letters, 2008, 287, 48-55.	0.7	80
28	An Internal Polarity Landmark Is Important for Externally Induced Hyphal Behaviors in <i>Candida albicans</i> . Eukaryotic Cell, 2008, 7, 712-720.	3.4	55
29	Hyphal Orientation of Candida albicans Is Regulated by a Calcium-Dependent Mechanism. Current Biology, 2007, 17, 347-352.	1.8	140
30	Mnt1p and Mnt2p of Candida albicans Are Partially Redundant α-1,2-Mannosyltransferases That Participate in O-Linked Mannosylation and Are Required for Adhesion and Virulence. Journal of Biological Chemistry, 2005, 280, 1051-1060.	1.6	173
31	Ectopic Expression of URA3 Can Influence the Virulence Phenotypes and Proteome of Candida albicans but Can Be Overcome by Targeted Reintegration of URA3 at the RPS10 Locus. Eukaryotic Cell, 2004, 3, 900-909	3.4	254