
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5927678/publications.pdf Version: 2024-02-01

DAN WANG

#	Article	IF	CITATIONS
1	Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy and Environmental Science, 2012, 5, 5604-5618.	15.6	1,069
2	Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 887-894.	7.3	925
3	Hierarchically Ordered Macroâ^'Mesoporous TiO ₂ â^'Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano, 2011, 5, 590-596.	7.3	715
4	Growth of Polypyrrole Ultrathin Films on MoS ₂ Monolayers as Highâ€Performance Supercapacitor Electrodes. Advanced Materials, 2015, 27, 1117-1123.	11.1	691
5	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2013, 52, 6417-6420.	7.2	650
6	α-Fe ₂ O ₃ multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy and Environmental Science, 2014, 7, 632-637.	15.6	630
7	Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44, 6749-6773.	18.7	603
8	Graphdiyne: synthesis, properties, and applications. Chemical Society Reviews, 2019, 48, 908-936.	18.7	584
9	Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction. ACS Nano, 2012, 6, 8288-8297.	7.3	578
10	Crossâ€Linked gâ€C ₃ N ₄ /rGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity. Small, 2013, 9, 3336-3344.	5.2	564
11	Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chemistry, 2018, 10, 924-931.	6.6	558
12	General Synthesis and Gasâ€5ensing Properties of Multipleâ€5hell Metal Oxide Hollow Microspheres. Angewandte Chemie - International Edition, 2011, 50, 2738-2741.	7.2	517
13	Accurate Control of Multishelled ZnO Hollow Microspheres for Dye ensitized Solar Cells with High Efficiency. Advanced Materials, 2012, 24, 1046-1049.	11.1	482
14	Photocatalytic Properties of Graphdiyne and Graphene Modified TiO ₂ : From Theory to Experiment. ACS Nano, 2013, 7, 1504-1512.	7.3	434
15	Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy and Environmental Science, 2012, 5, 6914.	15.6	427
16	Multishelled TiO ₂ Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries. Nano Letters, 2014, 14, 6679-6684.	4.5	406
17	Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, 1, .	19.8	352
18	Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Advanced Materials, 2019, 31, e1801993.	11.1	313

#	Article	IF	CITATIONS
19	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€Ion Batteries. Angewandte Chemie, 2013, 125, 6545-6548.	1.6	290
20	A Novel and Highly Efficient Photocatalyst Based on P25–Graphdiyne Nanocomposite. Small, 2012, 8, 265-271.	5.2	289
21	Hollow Multi-Shelled Structures of Co ₃ O ₄ Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 2238-2241.	6.6	287
22	Quintupleâ€Shelled SnO ₂ Hollow Microspheres with Superior Light Scattering for Highâ€Performance Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 905-909.	11.1	283
23	Dendriteâ€Free Sodiumâ€Metal Anodes for Highâ€Energy Sodiumâ€Metal Batteries. Advanced Materials, 2018, 30, e1801334.	11.1	267
24	Molecular Architecture of Cobalt Porphyrin Multilayers on Reduced Graphene Oxide Sheets for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 5585-5589.	7.2	242
25	General Synthesis of Homogeneous Hollow Coreâ^'Shell Ferrite Microspheres. Journal of Physical Chemistry C, 2009, 113, 2792-2797.	1.5	220
26	Two-dimensional carbon leading to new photoconversion processes. Chemical Society Reviews, 2014, 43, 4281-4299.	18.7	214
27	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 1422-1426.	7.2	212
28	Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes. Angewandte Chemie - International Edition, 2011, 50, 1593-1596.	7.2	206
29	A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy and Environmental Science, 2014, 7, 3720-3726.	15.6	198
30	Fewâ€Layer Graphdiyne Nanosheets Applied for Multiplexed Realâ€Time DNA Detection. Advanced Materials, 2017, 29, 1606755.	11.1	198
31	Stereodefined Codoping of sp-N and S Atoms in Few-Layer Graphdiyne for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 7240-7244.	6.6	198
32	Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 414-430.	3.2	189
33	Sandwichâ€Like Ultrathin TiS ₂ Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901872.	10.2	186
34	A New Graphdiyne Nanosheet/Pt Nanoparticleâ€Based Counter Electrode Material with Enhanced Catalytic Activity for Dyeâ€6ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500296.	10.2	180
35	Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity. Advanced Materials, 2018, 30, e1801171.	11.1	180
36	One dimensional CuInS2–ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 835.	15.6	164

#	Article	IF	CITATIONS
37	Hollow Multishelled Structures for Promising Applications: Understanding the Structure–Performance Correlation. Accounts of Chemical Research, 2019, 52, 2169-2178.	7.6	160
38	A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14309-14318.	5.2	157
39	pHâ€Regulated Synthesis of Multiâ€Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates. Advanced Science, 2014, 1, 1400011.	5.6	154
40	Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures. Advanced Materials, 2019, 31, e1802874.	11.1	153
41	Hollow Multiâ€5helled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 9078-9082.	7.2	149
42	Controllable synthesis of mesostructures from TiO ₂ hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chemical Science, 2016, 7, 793-798.	3.7	147
43	Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour. Nature Reviews Chemistry, 2020, 4, 159-168.	13.8	147
44	Synthesis and Applications of Graphdiyneâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1803762.	11.1	143
45	Ordered Arrays of Bead-Chain-like In ₂ O ₃ Nanorods and Their Enhanced Sensing Performance for Formaldehyde. Chemistry of Materials, 2010, 22, 3033-3042.	3.2	140
46	Hydrothermal Transformation of Dried Grass into Graphitic Carbonâ€Based High Performance Electrocatalyst for Oxygen Reduction Reaction. Small, 2014, 10, 3371-3378.	5.2	135
47	Lattice Distortion in Hollow Multiâ€Shelled Structures for Efficient Visibleâ€Light CO ₂ Reduction with a SnS ₂ /SnO ₂ Junction. Angewandte Chemie - International Edition, 2020, 59, 721-724.	7.2	128
48	Engineering of multi-shelled SnO ₂ hollow microspheres for highly stable lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17673-17677.	5.2	127
49	A Rutile TiO ₂ Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 9414-9418.	7.2	124
50	Formation of Septupleâ€6helled (Co _{2/3} Mn _{1/3})(Co _{5/6} Mn _{1/6}) ₂ O ₄ Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery. Advanced Materials, 2017, 29, 1700550.	11.1	122
51	Hollow Multishelled Heterostructured Anatase/TiO ₂ (B) with Superior Rate Capability and Cycling Performance. Advanced Materials, 2019, 31, e1805754.	11.1	117
52	Steering Hollow Multishelled Structures in Photocatalysis: Optimizing Surface and Mass Transport. Advanced Materials, 2020, 32, e2002556.	11.1	116
53	Atomically dispersed M–N–C catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 23187-23201.	5.2	109
54	Removal of Cd2+ from aqueous solutions by hydroxyapatite. Catalysis Today, 2008, 139, 94-99.	2.2	107

#	Article	IF	CITATIONS
55	Precursor-induced fabrication of β-Bi2O3 microspheres and their performance as visible-light-driven photocatalysts. Journal of Materials Chemistry A, 2013, 1, 9069.	5.2	107
56	V ₂ O ₅ Textile Cathodes with High Capacity and Stability for Flexible Lithiumâ€lon Batteries. Advanced Materials, 2020, 32, e1906205.	11.1	107
57	Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie - International Edition, 2019, 58, 996-1001.	7.2	104
58	Hydrothermal Synthesis and Characterization of a Novel One-Dimensional Titanium Glycolate Complex Single Crystal:Â Ti(OCH2CH2O)2. Chemistry of Materials, 1999, 11, 2008-2012.	3.2	103
59	Hollow Multiâ€5helled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 5266-5271.	7.2	102
60	Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine. Nanotechnology, 2009, 20, 245603.	1.3	100
61	One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 18314-18321.	5.2	97
62	Construction of Multishelled Binary Metal Oxides via Coabsorption of Positive and Negative Ions as a Superior Cathode for Sodium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 17114-17119.	6.6	96
63	Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation. Nano Research, 2017, 10, 3920-3928.	5.8	94
64	Graphdiyne: Recent Achievements in Photo―and Electrochemical Conversion. Advanced Science, 2018, 5, 1800959.	5.6	93
65	Highly Selective Twoâ€Electron Electrocatalytic CO ₂ Reduction on Singleâ€Atom Cu Catalysts. Small Structures, 2021, 2, 2000058.	6.9	93
66	Hierarchically Mesoporous Hematite Microspheres and Their Enhanced Formaldehyde ensing Properties. Small, 2011, 7, 578-582.	5.2	92
67	Strongly Coupled CoCr ₂ O ₄ /Carbon Nanosheets as High Performance Electrocatalysts for Oxygen Evolution Reaction. Small, 2016, 12, 2866-2871.	5.2	90
68	Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Research, 2018, 11, 3959-3971.	5.8	88
69	A Hollow Multi‧helled Structure for Charge Transport and Active Sites in Lithiumâ€Ion Capacitors. Angewandte Chemie - International Edition, 2020, 59, 4865-4868.	7.2	87
70	Hollow Multishelled Structure of Heterogeneous Co ₃ O ₄ –CeO _{2â^'} <i>_x</i> Nanocomposite for CO Catalytic Oxidation. Advanced Functional Materials, 2019, 29, 1806588.	7.8	86
71	Multi-shelled LiMn ₂ O ₄ hollow microspheres as superior cathode materials for lithium-ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 365-369.	3.0	84
72	Enriched graphitic N in nitrogen-doped graphene as a superior metal-free electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 19665-19670.	1.4	82

#	Article	IF	CITATIONS
73	Morphology control of hydroxyapatite through hydrothermal process. Journal of Alloys and Compounds, 2008, 457, 555-559.	2.8	81
74	Dualâ€Ðefects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{3â^'<i>δ</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 19691-19695.	7.2	80
75	Hierarchical Three-Dimensional Cobalt Phosphate Microarchitectures: Large-Scale Solvothermal Synthesis, Characterization, and Magnetic and Microwave Absorption Properties. Journal of Physical Chemistry C, 2008, 112, 15948-15955.	1.5	77
76	Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes. Nano Letters, 2020, 20, 3403-3410.	4.5	77
77	A dual-template strategy to engineer hierarchically porous Fe–N–C electrocatalysts for the high-performance cathodes of Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 9761-9770.	5.2	77
78	Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties. Materials Research Bulletin, 2017, 87, 224-229.	2.7	76
79	Fe–N ₄ and Co–N ₄ dual sites for boosting oxygen electroreduction in Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 13678-13687.	5.2	72
80	Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries. Chemical Research in Chinese Universities, 2020, 36, 313-319.	1.3	70
81	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	11.1	68
82	TiO ₂ and Co Nanoparticleâ€Decorated Carbon Polyhedra as Efficient Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Small, 2019, 15, e1804533.	5.2	67
83	Dually Ordered Porous TiO ₂ â€rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion. Advanced Materials, 2017, 29, 1604795.	11.1	66
84	Formation of multi-shelled nickel-based sulfide hollow spheres for rechargeable alkaline batteries. Inorganic Chemistry Frontiers, 2018, 5, 535-540.	3.0	66
85	Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 6926-6931.	7.2	65
86	A high-entropy perovskite titanate lithium-ion battery anode. Journal of Materials Science, 2020, 55, 6942-6951.	1.7	63
87	Dual-nitrogen-source engineered Fe–N _x moieties as a booster for oxygen electroreduction. Journal of Materials Chemistry A, 2019, 7, 11007-11015.	5.2	62
88	Synthesis of multi-shelled MnO ₂ hollow microspheres via an anion-adsorption process of hydrothermal intensification. Inorganic Chemistry Frontiers, 2016, 3, 1065-1070.	3.0	60
89	Patterning Islandlike MnO ₂ Arrays by Breath-Figure Templates for Flexible Transparent Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 27001-27008.	4.0	60
90	In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Metals, 2020, 39, 1383-1394.	3.6	57

#	Article	IF	CITATIONS
91	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	4.6	57
92	Nonaqueous Synthesis and Characterization of a Novel Layered Zirconium Phosphate Templated with Mixed Organic and Inorganic Cations. Chemistry of Materials, 2000, 12, 956-960.	3.2	56
93	Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors. Chemical Research in Chinese Universities, 2020, 36, 68-73.	1.3	53
94	Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nature Communications, 2020, 11, 4450.	5.8	52
95	Low-temperature hydrothermal synthesis and structure control of nano-sized CePO4. CrystEngComm, 2009, 11, 1630.	1.3	51
96	A Hollowâ€Shell Structured V ₂ O ₅ Electrodeâ€Based Symmetric Full Liâ€Ion Battery with Highest Capacity. Advanced Energy Materials, 2019, 9, 1900909.	10.2	51
97	High-Pressure Synthesis and Structure of SrCo6O11: Pillared Kagomé Lattice System with a 1/3 Magnetization Plateau. Chemistry of Materials, 2005, 17, 2789-2791.	3.2	50
98	Uniform Twoâ€Dimensional Co ₃ O ₄ Porous Sheets: Facile Synthesis and Enhanced Photocatalytic Performance. Chemical Engineering and Technology, 2016, 39, 891-898.	0.9	50
99	Core–shell nano/microstructures for heterogeneous tandem catalysis. Materials Chemistry Frontiers, 2021, 5, 1126-1139.	3.2	50
100	Transition Metal and Nitrogen Coâ€Doped Carbonâ€based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. ChemSusChem, 2021, 14, 33-55.	3.6	49
101	Unique structural advances of graphdiyne for energy applications. EnergyChem, 2020, 2, 100041.	10.1	48
102	An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co ₃ O ₄ electrocatalysts with an exceptionally high S-doped active surface. Chemical Communications, 2015, 51, 5695-5697.	2.2	47
103	The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Chemical Communications, 2016, 52, 9450-9453.	2.2	47
104	BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. Journal of Colloid and Interface Science, 2020, 580, 429-438.	5.0	47
105	High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries. Rare Metals, 2022, 41, 1265-1275.	3.6	46
106	Hollow Multiâ€Shelled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 9176-9180.	1.6	45
107	Scalable and controllable fabrication of CNTs improved yolk-shelled Si anodes with advanced in operando mechanical quantification. Energy and Environmental Science, 2021, 14, 3502-3509.	15.6	45
108	Granumâ€Like Stacking Structures with TiO ₂ –Graphene Nanosheets for Improving Photoâ€electric Conversion. Small, 2012, 8, 1762-1770.	5.2	44

#	Article	lF	CITATIONS
109	General Synthesis of Multipleâ€Cores@Multipleâ€Shells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 25719-25722.	7.2	44
110	Resonanceâ€Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed. Advanced Materials, 2018, 30, e1801972.	11.1	43
111	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie, 2019, 131, 1436-1440.	1.6	42
112	Small Structures Bring Big Things: Performance Control of Hollow Multishelled Structures. Small Structures, 2021, 2, 2000041.	6.9	42
113	Amorphous High-entropy Non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 606, 635-644.	5.0	42
114	Lattice Distortion in Hollow Multiâ€Shelled Structures for Efficient Visibleâ€Light CO ₂ Reduction with a SnS ₂ /SnO ₂ Junction. Angewandte Chemie, 2020, 132, 731-734.	1.6	41
115	Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Metals, 2021, 40, 2464-2473.	3.6	41
116	High rate Li-ion storage properties of MOF-carbonized derivatives coated on MnO nanowires. Materials Chemistry Frontiers, 2017, 1, 1975-1981.	3.2	39
117	When hollow multishelled structures (HoMSs) meet metal–organic frameworks (MOFs). Chemical Science, 2020, 11, 5359-5368.	3.7	39
118	Hollow Multishelled Structured SrTiO ₃ with La/Rh Coâ€Đoping for Enhanced Photocatalytic Water Splitting under Visible Light. Small, 2021, 17, e2005345.	5.2	38
119	Removal of Cd2+ from aqueous solution with carbon modified aluminum-pillared montmorillonite. Catalysis Today, 2008, 139, 135-139.	2.2	34
120	A fluorescent quenching performance enhancing principle for carbon nanodot-sensitized aqueous solar cells. Nano Energy, 2015, 13, 124-130.	8.2	34
121	Design of three-dimensional hierarchical TiO ₂ /SrTiO ₃ heterostructures towards selective CO ₂ photoreduction. Inorganic Chemistry Frontiers, 2019, 6, 1667-1674.	3.0	33
122	MnO ₂ /Porous Carbon Nanotube/MnO ₂ Nanocomposites for High-Performance Supercapacitor. ACS Applied Nano Materials, 2020, 3, 11152-11159.	2.4	33
123	Accurately Localizing Multiple Nanoparticles in a Multishelled Matrix Through Shellâ€to ore Evolution for Maximizing Energyâ€6torage Capability. Advanced Materials, 2022, 34, e2200206.	11.1	32
124	Hollow multishelled structures revive high energy density batteries. Nanoscale Horizons, 2020, 5, 1287-1292.	4.1	31
125	Nanosized high entropy spinel oxide (FeCoNiCrMn) ₃ O ₄ as a highly active and ultra-stable electrocatalyst for the oxygen evolution reaction. Sustainable Energy and Fuels, 2022, 6, 1479-1488.	2.5	31
126	In-situ synthesis of niobium-doped TiO2 nanosheet arrays on double transition metal MXene (TiNbCTx) as stable anode material for lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 617, 147-155.	5.0	31

#	Article	IF	CITATIONS
127	High Valence M-Incorporated PdCu Nanoparticles (M = Ir, Rh, Ru) for Water Electrolysis in Alkaline Solution. Nano Letters, 2021, 21, 5774-5781.	4.5	30
128	Catalytic performance in phenol hydroxylation by hydrogen peroxide over a catalyst of V–Zr–O complex. Catalysis Today, 1999, 51, 39-46.	2.2	29
129	Enhanced Light Harvesting in Plasmonic Dyeâ€Sensitized Solar Cells by Using a Topologically Ordered Gold Lightâ€Trapping Layer. ChemSusChem, 2012, 5, 572-576.	3.6	29
130	A Hollow Multi‣helled Structure for Charge Transport and Active Sites in Lithiumâ€Ion Capacitors. Angewandte Chemie, 2020, 132, 4895-4898.	1.6	29
131	Graphdiyne with Enhanced Ability for Electron Transfer. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1048-1060.	2.2	29
132	Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 14943-14953.	5.2	29
133	One-Pot Synthesis of Porous Hematite Hollow Microspheres and Their Application in Water Treatment. Journal of Nanoscience and Nanotechnology, 2010, 10, 7707-7710.	0.9	28
134	Synthesis and photocatalytic activity of hierarchical flower-like SrTiO3 nanostructure. Science China Materials, 2015, 58, 192-197.	3.5	28
135	Fabrication of Porous Carbon with Controllable Nitrogen Doping as Anode for Highâ€Performance Potassiumâ€ion Batteries. ChemElectroChem, 2019, 6, 3699-3707.	1.7	28
136	Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 2020, 422, 213445.	9.5	28
137	Synergistic Interfacial and Doping Engineering of Heterostructured NiCo(OH)x-CoyW as an Efficient Alkaline Hydrogen Evolution Electrocatalyst. Nano-Micro Letters, 2021, 13, 120.	14.4	28
138	Hollow structures as drug carriers: Recognition, response, and release. Nano Research, 2022, 15, 739-757.	5.8	28
139	Template-free hydrothermal synthesis of hollow hematite microspheres. Journal of Materials Science, 2010, 45, 5685-5691.	1.7	27
140	Synthesis and characterization of Zn-doped MgAl-layered double hydroxide nanoparticles as PVC heat stabilizer. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	27
141	Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions. Nano Research, 2017, 10, 3522-3533.	5.8	27
142	Physicomechanical, friction, and abrasion properties of EVA/PU blend foams foamed by supercritical nitrogen. Polymer Engineering and Science, 2018, 58, 673-682.	1.5	27
143	Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 393-402.	1.4	26
144	Ordered mesoporous NiFe2O4 with ultrathin framework for low-ppb toluene sensing. Science Bulletin, 2018, 63, 187-193.	4.3	26

#	Article	IF	CITATIONS
145	Metal Mesh as a Transparent Omnidirectional Strain Sensor. Advanced Materials Technologies, 2019, 4, 1800698.	3.0	26
146	Heteroatoms in graphdiyne for catalytic and energy-related applications. Journal of Materials Chemistry A, 2021, 9, 19298-19316.	5.2	26
147	Enhanced catalytic activity of Au-CeO2/Al2O3 monolith for low-temperature CO oxidation. Catalysis Communications, 2019, 129, 105729.	1.6	24
148	A Novel Open-Framework Cerium Phosphate Fluoride: (NH4)[CeIVF2(PO4)]. Journal of Solid State Chemistry, 2001, 157, 180-185.	1.4	23
149	Oxalate-induced hydrothermal synthesis of CePO4:Tb nanowires with enhanced photoluminescence. Scripta Materialia, 2010, 62, 133-136.	2.6	23
150	Hollow multi-shell structured SnO ₂ with enhanced performance for ultraviolet photodetectors. Inorganic Chemistry Frontiers, 2019, 6, 1968-1972.	3.0	23
151	Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO ₂ to CO. Chemical Communications, 2020, 56, 11275-11278.	2.2	23
152	Boosting hydrogen evolution reaction on few-layer graphdiyne by sp-N and B co-doping. APL Materials, 2021, 9, .	2.2	23
153	A novel organically templated hybrid open-framework manganese phosphate–oxalate. Solid State Sciences, 2005, 7, 221-226.	1.5	21
154	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 1411-1415.	4.1	21
155	Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous and Mesoporous Materials, 2022, 338, 111889.	2.2	21
156	Controlled Synthesis of Terbium Orthophosphate Spindle-Like Hierarchical Nanostructures with Improved Photoluminescence. European Journal of Inorganic Chemistry, 2009, 2009, 2388-2392.	1.0	20
157	Electrodeposited Graphene and Silver Nanoparticles Modified Electrode for Direct Electrochemistry and Electrocatalysis of Hemoglobin. Electroanalysis, 2012, 24, 1973-1979.	1.5	20
158	Short-wave infrared emitted/excited fluorescence from carbon dots and preliminary applications in bioimaging. Materials Chemistry Frontiers, 2018, 2, 1343-1350.	3.2	20
159	Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of hierarchically ordered macro-mesoporous TiO2 film. Science China Chemistry, 2011, 54, 930-935.	4.2	19
160	Electrodeposited Graphene and Gold Nanoparticle Modified Carbon Ionic Liquid Electrode for Sensitive Detection of Rutin. Chinese Journal of Analytical Chemistry, 2013, 41, 709-713.	0.9	19
161	Novel Open-Framework Material:Â Cerium Oxyfluoride with CeO6F2Dodecahedron. Chemistry of Materials, 2000, 12, 3527-3529.	3.2	18
162	Efficient nitrogen reduction to ammonia by fluorine vacancies with a multi-step promoting effect. Journal of Materials Chemistry A, 2021, 9, 894-899.	5.2	18

#	Article	IF	CITATIONS
163	Hollow Nanostructures for Surface/Interface Chemical Energy Storage Application. Acta Chimica Sinica, 2020, 78, 1200.	0.5	18
164	A high performance redox-mediated electrolyte for improving properties of metal oxides based pseudocapacitive materials. Electrochimica Acta, 2015, 186, 478-485.	2.6	17
165	Triple‧helled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie, 2019, 131, 1008-1013.	1.6	17
166	FeS encapsulated hierarchical porous S, N-dual-doped carbon for oxygen reduction reaction facilitation in Zn–air batteries. Sustainable Energy and Fuels, 2021, 5, 2695-2703.	2.5	17
167	sp-Hybridized nitrogen doped graphdiyne for high-performance Zn–air batteries. Materials Chemistry Frontiers, 2021, 5, 7987-7992.	3.2	17
168	The development of hollow multishelled structure: from the innovation of synthetic method to the discovery of new characteristics. Science China Chemistry, 2022, 65, 7-19.	4.2	17
169	Progress and Perspectives of Hollow Multishelled Structures. Chinese Journal of Chemistry, 2022, 40, 1190-1203.	2.6	17
170	Non-aqueous Synthesis and Structure of a Novel Monodimensional Zirconium Phosphate: [NH4]3[Zr(OH)2(PO4)(HPO4)]. Chemistry Letters, 2002, 31, 398-399.	0.7	16
171	Microcellular chlorinated polyethylene (CM) rubber foam by using N2 as blowing agent. Journal of Polymer Research, 2017, 24, 1.	1.2	16
172	Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction. Chemical Research in Chinese Universities, 2021, 37, 1158-1175.	1.3	16
173	Ordered Vacancies on the Body-Centered Cubic PdCu Nanocatalysts. Nano Letters, 2021, 21, 9580-9586.	4.5	16
174	The First Organically Templated Layered Cerium Phosphate-Hydrogen Sulfate: [enH2]0.5[CellI(PO4)(HSO4)(OH2)]. Chemistry Letters, 2002, 31, 1120-1121.	0.7	15
175	An Effective Route for Porous Ferrihydrite Preparation from Layered Double Hydroxide Precursors. Chemistry Letters, 2006, 35, 656-657.	0.7	15
176	Template-assisted <i>in situ</i> confinement synthesis of nitrogen and oxygen co-doped 3D porous carbon network for high-performance sodium-ion battery anode. New Journal of Chemistry, 2018, 42, 14410-14416.	1.4	15
177	Hollow Multiâ€5helled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie, 2019, 131, 5320-5325.	1.6	15
178	Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne. Nano Research, 2022, 15, 573-580.	5.8	15
179	An Effective Preparation Route to A Giant Magnetoresistance Material: Hydrothermal Synthesis and Characterization of La0.5Sr0.5MnO3. Chemistry Letters, 2003, 32, 74-75.	0.7	14
180	Hierarchical Hydroxyapatite Microspheres Composed of Nanorods and Their Competitive Sorption Behavior for Heavy Metal lons. European Journal of Inorganic Chemistry, 2012, 2012, 2665-2668.	1.0	14

#	Article	IF	CITATIONS
181	Hydrothermal synthesis of A-site deficient perovskite-type solid solution system (1–x)BaTiO3·xLa2/3TiO3 (x = 0.1–1.0). Materials Research Bulletin, 2001, 36, 239-244.	2.7	13
182	Synthesis of hematite particles with various shapes by a simple hydrothermal reaction. Journal of the Ceramic Society of Japan, 2009, 117, 245-248.	0.5	13
183	Facile solvothermal synthesis of gear-shaped submicrostructured Y2O3:Eu3+ phosphor. Solid State Sciences, 2011, 13, 1060-1064.	1.5	13
184	Morphological evolution of hollow NiCo ₂ O ₄ microspheres and their high pseudocapacitance contribution for Li/Na-ion battery anodes. New Journal of Chemistry, 2018, 42, 17762-17768.	1.4	13
185	Order-disorder transition in amorphous Vanadium-Phosphorus-Lithium cathode of lithium ion battery. Applied Surface Science, 2022, 573, 151490.	3.1	13
186	Experimental and theoretical investigation of the tuning of electronic structure in SnO ₂ <i>via</i> Co doping for enhanced styrene epoxidation catalysis. Catalysis Science and Technology, 2022, 12, 1499-1511.	2.1	13
187	Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Research, 2022, 15, 4117-4123.	5.8	13
188	A Novel Layered Zirconium Phosphate [NH4]2[Zr(OH)3(PO4)] Synthesized through Non-aqueous Route. Chemistry Letters, 2002, 31, 804-805.	0.7	12
189	Hydrothermal synthesis and structure of three novel open-framework lanthanide sulfate–oxalates. Inorganic Chemistry Communication, 2010, 13, 831-833.	1.8	12
190	Triazine-graphdiyne with well-defined two kinds of active sites for simultaneous detection of Pb2+ and Cd2+. Journal of Environmental Chemical Engineering, 2022, 10, 107159.	3.3	12
191	A Novel Open-framework Cerium Sulfate Hydrate: Synthesis and Characterization. Chemistry Letters, 2004, 33, 1186-1187.	0.7	11
192	In Situ Construction of Multibuffer Structure 3D CoSn@SnO x /CoO x @C Anode Material for Ultralong Life Lithium Storage. Energy Technology, 2020, 8, 1900829.	1.8	11
193	Hollow Multishell-Structured TiO ₂ /MAPbI ₃ Composite Improves Charge Utilization for Visible-Light Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 5397-5404.	1.9	11
194	Decoding lithium batteries through advanced in situ characterization techniques. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 965-989.	2.4	11
195	Synthesis of a hierarchically meso-macroporous TiO ₂ film based on UV light-induced in situ polymerization: application to dye-sensitized solar cells. RSC Advances, 2014, 4, 44692-44699.	1.7	10
196	A Rutile TiO 2 Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 9514-9518.	1.6	10
197	High performance determination of Pb2+ in water by 2,4-dithiobiuret-Reduced graphene oxide composite with wide linear range and low detection limit. Analytica Chimica Acta, 2020, 1125, 76-85.	2.6	10
198	Eliminating Hysteresis of Perovskite Solar Cells with Hollow TiO2 Mesoporous Electron Transport Layer. Chemical Research in Chinese Universities, 2022, 38, 117-122.	1.3	10

#	Article	IF	CITATIONS
199	Synthesis and Characterization of the First Organically Templated Layered Cerium Phosphate Fluoride: [(CH2)2(NH3)2]0.5[CeIVF3(HPO4)]. Chemistry Letters, 2004, 33, 458-459.	0.7	9
200	Defect Makes Perfect: Metal-free Electrocatalyst for Oxygen Reduction in Acid. CheM, 2018, 4, 2262-2264.	5.8	9
201	Ionic liquid assisted multi-heteroatom doping in core-shell ZnFe2O4@rGO with highly reversible lithiation/delithiation kinetics. Journal of Alloys and Compounds, 2020, 848, 156593.	2.8	9
202	Glass anode crystallization for high specific capacity Lithium-ion batteries. Chemical Engineering Journal, 2022, 442, 136228.	6.6	9
203	Using DMH as a complexing agent for pulse electrodeposition of platinum nanoparticles towards oxygen reduction reaction. lonics, 2020, 26, 3473-3482.	1.2	8
204	Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angewandte Chemie, 2021, 133, 7002-7007.	1.6	8
205	Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1666-1674.	2.4	8
206	Graphdiyne Oxide Quantum Dots: The Enhancement of Peroxidase-like Activity and Their Applications in Sensing H ₂ O ₂ and Cysteine. ACS Applied Bio Materials, 2022, 5, 3418-3427.	2.3	8
207	Synthesis of anatase titanium dioxide nanocaps via hydrofluoric acid etching towards enhanced photocatalysis. Materials Research Bulletin, 2016, 74, 311-318.	2.7	7
208	Transition Metal (Fe, Co, Mn) Boosting the Lithium Storage of the Multishelled NiO Anode. Energy Technology, 2020, 8, 2000008.	1.8	7
209	Synthesis and property of three novel organically templated layered cerium materials. Microporous and Mesoporous Materials, 2007, 101, 66-72.	2.2	6
210	Phase evolution and photoluminescence enhancement of CePO4 nanowires from a low phosphate concentration system. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	6
211	Terahertz strong-field physics in light-emitting diodes for terahertz detection and imaging. Communications Physics, 2021, 4, .	2.0	6
212	Pulse electrodeposited CoFeNiP as a highly active and stable electrocatalyst for alkaline water electrolysis. Sustainable Energy and Fuels, 2021, 5, 3172-3181.	2.5	6
213	Dualâ€Ðefects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{3â^'<i>δ</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 19859-19863.	1.6	5
214	Nanosized CoSb Alloy Confined in Honeycomb Carbon Framework Toward Highâ€Property Potassiumâ€lon and Sodiumâ€lon Batteries. Energy Technology, 2021, 9, 2100095.	1.8	5
215	Hydrothermal synthesis and crystal structure of a novel 2-D polymeric manganese (II) complex with mixed ligands. Transition Metal Chemistry, 2005, 30, 294-298.	0.7	4
216	Synthesis and Characterization of Hollow Cadmium Oxide Sphere with Carbon Microsphere as Template. Journal of Nanoscience and Nanotechnology, 2013, 13, 1423-1426.	0.9	4

#	Article	IF	CITATIONS
217	Morphology-tailored synthesis of flower-like Y2O3:Eu3+ microspheres. Materials Research Bulletin, 2012, 47, 2135-2139.	2.7	3
218	General Synthesis of Multipleâ€Cores@Multipleâ€Shells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 25923-25926.	1.6	3
219	Advanced Materials for Green Chemistry and Renewable Energy. Small, 2019, 15, e1902047.	5.2	2
220	Hollow Nanostructures. ChemNanoMat, 2020, 6, 1419-1420.	1.5	2
221	Cryo-EM Reveals the Structure and Chemistry of the Silicon Solid-Electrolyte Interphase. CheM, 2020, 6, 331-334.	5.8	2
222	Smart heat isolator with hollow multishelled structures. Green Energy and Environment, 2023, 8, 1154-1160.	4.7	2
223	Simple algorithm for soil moisture retrieval with co-polarized SAR data. Journal of Electronics, 2013, 30, 237-242.	0.2	1
224	Systematic Study of Perovskite Layers if Doped with Strong Oxidants. Solar Rrl, 0, , 2200159.	3.1	1
225	Synthesis and Characterization of the First Organically Templated Layered Cerium Phosphate Fluoride: [(CH2)2(NH3)2]0.5 [CeIVF3(HPO4)] ChemInform, 2004, 35, no.	0.1	0
226	A Novel Open-Framework Cerium Sulfate Hydrate: Synthesis and Characterization ChemInform, 2004, 35, no.	0.1	0
227	High-Pressure Synthesis and Structure of SrCo6O11: Pillared Kagome Lattice System with a 1/3 Magnetization Plateau ChemInform, 2005, 36, no.	0.1	0
228	Preparation and crystal structure of [enH2]0.5[Ho(HPO4)(SO4)(H2O)] (en; ethylenediamine). Journal of the Ceramic Society of Japan, 2010, 118, 236-240.	0.5	0
229	Preparation of textural lamellar tin deposits via electrodeposition. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	0
230	Innentitelbild: Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting (Angew. Chem. 13/2021). Angewandte Chemie, 2021, 133, 6906-6906.	1.6	0