Adrian A Vojnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592767/publications.pdf

Version: 2024-02-01

40 papers 2,679 citations

257450 24 h-index 289244 40 g-index

40 all docs

40 docs citations

40 times ranked

3521 citing authors

#	Article	IF	CITATIONS
1	Virulence factors analysis of native isolates of <i>Xanthomonas albilineans</i> and <i>Xanthomonas sacchari</i> from Tucum \tilde{A}_i n, Argentina, reveals differences in pathogenic strategies. Plant Pathology, 2021, 70, 1072-1084.	2.4	6
2	Towards a versatile and economic Chagas Disease point-of-care testing system, by integrating loop-mediated isothermal amplification and contactless/label-free conductivity detection. PLoS Neglected Tropical Diseases, 2021, 15, e0009406.	3.0	6
3	Prâ€favoured variants of the bacteriophytochrome from the plant pathogen <i>Xanthomonas campestris</i> hint on light regulation of virulenceâ€associated mechanisms. FEBS Journal, 2021, 288, 5986-6002.	4.7	4
4	Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. Science Advances, 2021, 7, eabh1097.	10.3	11
5	Single-stranded oligodeoxynucleotides induce plant defence in Arabidopsis thaliana. Annals of Botany, 2020, 126, 413-422.	2.9	5
6	Changes in the physico-chemical properties of the xanthan produced by <i>Xanthomonas citri</i> subsp. <i>citri</i> subsp. <i>citr</i>	2.5	4
7	The histoneâ€like protein HupB influences biofilm formation and virulence in Xanthomonas citri ssp. citri through the regulation of flagellar biosynthesis. Molecular Plant Pathology, 2019, 20, 589-598.	4.2	11
8	The Endophytic Strain Klebsiella michiganensis Kd70 Lacks Pathogenic Island-Like Regions in Its Genome and Is Incapable of Infecting the Urinary Tract in Mice. Frontiers in Microbiology, 2018, 9, 1548.	3.5	12
9	Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L.) Tj ETQq1 1 0.78-607-621.		/Overlock 1 36
10	Resistance to citrus canker induced by a variant of <i>Xanthomonas citri</i> ssp. <i>citri</i> is associated with a hypersensitive cell death response involving autophagyâ€associated vacuolar processes. Molecular Plant Pathology, 2017, 18, 1267-1281.	4.2	16
11	Closely-related Xanthomonas citri subsp. citri isolates trigger distinct histological and transcriptional responses in Citrus limon. Scientia Agricola, 2016, 73, 552-558.	1.2	2
12	Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production. Frontiers in Plant Science, 2016, 7, 1851.	0.4	46
	Oxidate Dependent New York and Defended, 2010, 7, 1001.	3.6	
13	Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. Journal of Molecular Biology, 2016, 428, 3702-3720.		73
13	Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. Journal of Molecular Biology, 2016, 428,	4.2	73
	Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. Journal of Molecular Biology, 2016, 428, 3702-3720. Xanthan Pyruvilation Is Essential for the Virulence of <i>Xanthomonas campestris</i>	4.2 2.6	
14	Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. Journal of Molecular Biology, 2016, 428, 3702-3720. Xanthan Pyruvilation Is Essential for the Virulence of <i>Xanthomonas campestris</i> pv. <i>Campestris</i> Molecular Plant-Microbe Interactions, 2016, 29, 688-699.	4.2 2.6 4.5	27
14 15	Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. Journal of Molecular Biology, 2016, 428, 3702-3720. Xanthan Pyruvilation Is Essential for the Virulence of <i>Xanthomonas campestris</i> holecular Plant-Microbe Interactions, 2016, 29, 688-699. <i>Xanthomonas campestris</i> holecular Plant-Microbe Interactions, 2016, 29, 688-699. <i>Xanthomonas campestris</i> holecular Plant-Microbe Interactions, 2016, 29, 688-699. Authomonas campestris Authomonas camp	4.2 2.6 4.5	27 49

#	Article	IF	Citations
19	Characterization of a Variant of <i>Xanthomonas citri</i> subsp. <i>citri</i> that Triggers a Host-Specific Defense Response. Phytopathology, 2013, 103, 555-564.	2.2	19
20	Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri. Microbiology (United Kingdom), 2013, 159, 1911-1919.	1.8	29
21	Hrp <scp>M</scp> is involved in glucan biosynthesis, biofilm formation and pathogenicity in <i><scp>X</scp>anthomonas citri</i> ssp. <i>citri</i> . Molecular Plant Pathology, 2012, 13, 1010-1018.	4.2	20
22	The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology (United Kingdom), 2011, 157, 819-829.	1.8	103
23	<i>Botrytis cinerea</i> Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato Â. Plant Cell, 2011, 23, 2405-2421.	6.6	343
24	Suppression of COX-2, IL- $1\hat{l}^2$ and TNF- \hat{l}_\pm expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L Fìtoterapìâ, 2011, 82, 414-421.	2.2	88
25	Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against <i>Xanthomonas citri</i> subsp. <i>citri</i> Plant Biotechnology Journal, 2011, 9, 394-407.	8.3	63
26	Salicylic Acid Is Involved in the <i>Nb</i> -Mediated Defense Responses to <i>Potato virus X</i> in <i>Solanum tuberosum</i> . Molecular Plant-Microbe Interactions, 2010, 23, 394-405.	2.6	47
27	Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host. Applied Microbiology and Biotechnology, 2010, 87, 467-477.	3.6	35
28	Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chemistry, 2009, 115, 456-461.	8.2	124
29	<i>Xanthomonas campestris</i> Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor. Plant Physiology, 2009, 149, 1017-1027.	4.8	155
30	Stomata and pathogens. Plant Signaling and Behavior, 2009, 4, 1114-1116.	2.4	60
31	Biofilm Formation, Epiphytic Fitness, and Canker Development in <i>Xanthomonas axonopodis</i> pv. <i>citri</i> . Molecular Plant-Microbe Interactions, 2007, 20, 1222-1230.	2.6	214
32	Bacterial Cyclic \hat{l}^2 -(1,2)-Glucan Acts in Systemic Suppression of Plant Immune Responses. Plant Cell, 2007, 19, 2077-2089.	6.6	81
33	Controlled synthesis of the DSF cell?cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environmental Microbiology, 2007, 9, 2101-2109.	3.8	97
34	Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 2006, 40, 223-231.	3.3	475
35	Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition. Plant Physiology, 2006, 141, 178-187.	4.8	121
36	Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon. Electronic Journal of Biotechnology, 2006, 9, 0-0.	2.2	37

#	Article	IF	CITATIONS
37	Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonascampestris. Carbohydrate Research, 2002, 337, 315-326.	2.3	9
38	Expression of the gum Operon Directing Xanthan Biosynthesis in Xanthomonas campestris and Its Regulation In Planta. Molecular Plant-Microbe Interactions, 2001, 14, 768-774.	2.6	87
39	Regulation of the synthesis of cyclic glucan in Xanthomonas campestris by a diffusible signal molecule. Archives of Microbiology, 2001, 176, 415-420.	2.2	30
40	Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology (United Kingdom), 1998, 144, 1487-1493.	1.8	72