

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5927661/publications.pdf Version: 2024-02-01

VANC VII

#	Article	IF	CITATIONS
1	Determination of hardness for maize kernels based on hyperspectral imaging. Food Chemistry, 2022, 366, 130559.	8.2	35
2	Effect of moisture, protein, starch, soluble sugar contents and microstructure on mechanical properties of maize kernels. Food Chemistry, 2022, 379, 132147.	8.2	16
3	Macroscopic assembled graphene nanofilms based room temperature ultrafast midâ€infrared photodetectors. InformaAnA-Materiály, 2022, 4, .	17.3	24
4	Improving the solidification performance of a shellâ€andâ€tube latentâ€heat thermal energy storage unit using a <scp>connectedâ€Y</scp> â€shaped fin. International Journal of Energy Research, 2022, 46, 12758-12771.	4.5	8
5	Decreasing grain processing breakage with a novel flexible threshing system: Multivariate optimization and wear investigation. Journal of Food Processing and Preservation, 2022, 46, .	2.0	1
6	Feature selection, artificial neural network prediction and experimental testing for predicting breakage rate of maize kernels based on mechanical properties. Journal of Food Process Engineering, 2021, 44, e13621.	2.9	7
7	HANDY: a device for assessing resistance to mechanical crushing of maize kernel. Plant Methods, 2021, 17, 44.	4.3	6
8	Effects of different moisture content and varieties on physico–mechanical properties of maize kernel and pedicel. Journal of Food Process Engineering, 2021, 44, e13778.	2.9	8
9	Determination and interpretation of bonded-particle model parameters for simulation of maize kernels. Biosystems Engineering, 2021, 210, 193-205.	4.3	20
10	Effects of shape feature on compression characteristics and crack rules of maize kernel. Journal of Food Processing and Preservation, 2020, 44, e14307.	2.0	15
11	Application of multiâ€element viscoelastic models to freshness evaluation of beef based on the viscoelasticity principle. Journal of Texture Studies, 2019, 50, 306-315.	2.5	5
12	MLR and experimental testing for characterization and classification of damage resistance of maize hybrids based on mechanical properties. Journal of Food Process Engineering, 2019, 42, e13262.	2.9	16
13	Damage resistance and compressive properties of bulk maize kernels at varying pressing factors: Experiments and modeling. Journal of Food Process Engineering, 2019, 42, e13267.	2.9	13