
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5927459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of ammonium-containing polyalkyl acrylate on the rheological properties of crude oils with different ratio of resins and waxes. Journal of Petroleum Science and Engineering, 2016, 146, 96-102.	2.1	26
2	Effect of magnetic field on the paramagnetic, antioxidant, and viscosity characteristics of some crude oils. Petroleum Chemistry, 2008, 48, 51-55.	0.4	22
3	Effect of ultrasonic treatment on the composition and properties of waxy high-resin oil. Petroleum Chemistry, 2016, 56, 683-689.	0.4	17
4	Interrelationship between the physical properties and the humus content of chernozems in the south of European Russia. Eurasian Soil Science, 2006, 39, 187-194.	0.5	15
5	Effect of Constant Magnetic Field on the Rheological Properties of High-Paraffinicity Oils. Colloid Journal, 2003, 65, 469-474.	0.5	13
6	Fluorescence analysis of photoinduced degradation of ecotoxicants in the presence of humic acids. Luminescence, 2005, 20, 187-191.	1.5	12
7	The influence of natural surfactants on the stabilization of oil-water emulsions. Petroleum Chemistry, 2010, 50, 158-163.	0.4	12
8	Effect of humic acids on phototransformation of methylphenols in water. Journal of Applied Spectroscopy, 2008, 75, 597-602.	0.3	10
9	Antioxidants in the water-soluble carbohydrate fractions of the moss Sphagnum fuscum and sphagnum peat. Solid Fuel Chemistry, 2008, 42, 68-73.	0.2	10
10	Composition and properties of humic acids from natural and mechanochemically oxidized brown coal. Solid Fuel Chemistry, 2015, 49, 201-205.	0.2	10
11	Changes in the Composition of Humic Acids with Mechanochemical Impact on Peat and Coal. Solid Fuel Chemistry, 2019, 53, 29-35.	0.2	10
12	Change in the Rheological Properties of High-Paraffin Petroleums under the Action of Vibrojet Magnetic Activation. Journal of Engineering Physics and Thermophysics, 2004, 77, 1034-1039.	0.2	9
13	Stimulation of the activity of microorganisms by humin preparations in oil-polluted soils. Eurasian Soil Science, 2010, 43, 210-215.	0.5	8
14	Influence of the conditions of mechanical activation of lignite on the composition and sorption properties of humic acids isolated from it. Russian Journal of Applied Chemistry, 2013, 86, 552-557.	0.1	8
15	Paraffin Blockage Specificsin Model Petroliferous Systems. Procedia Chemistry, 2014, 10, 229-235.	0.7	8
16	Title is missing!. Journal of Analytical Chemistry, 2001, 56, 971-974.	0.4	7
17	Composition of humic acids in peats with various degrees of humification. Solid Fuel Chemistry, 2010, 44, 305-309.	0.2	7
18	Improving the structural-rheological properties of high-paraffin crude oil using chemical reagents and vibrational treatment. Chemistry and Technology of Fuels and Oils, 2011, 47, 358-361.	0.2	7

#	Article	IF	CITATIONS
19	Influence of aggregation of asphaltenes on the rheological properties of oil. Russian Journal of Applied Chemistry, 2013, 86, 1370-1375.	0.1	7
20	Sorption of humic acids by quartz sands. Solid Fuel Chemistry, 2014, 48, 239-244.	0.2	7
21	Study of Viscosity-temperature Properties of Oil and Gas-condensate Mixtures in Critical Temperature Ranges of Phase Transitions. Procedia Chemistry, 2014, 10, 343-348.	0.7	7
22	Quenching of fluorescence of phenolic compounds and modified humic acids by cadmium ions. Luminescence, 2016, 31, 1098-1102.	1.5	7
23	Effect of mechanochemical modification on the surfactant and structural properties of humic and himatomelanic acids. Russian Journal of Physical Chemistry A, 2017, 91, 1273-1278.	0.1	7
24	Rheological behavior of oils in a magnetic field. Journal of Engineering Physics and Thermophysics, 2006, 79, 105-113.	0.2	6
25	Association constants of modified humic acids with biocides of the triazole series: Cyproconazole and tebuconazole. Russian Journal of Physical Chemistry A, 2011, 85, 1558-1561.	0.1	6
26	Role of modified humic acids from peat in the detoxification of tebuconazole. Solid Fuel Chemistry, 2011, 45, 62-67.	0.2	6
27	Mechanochemical modification of peat humic acids. Solid Fuel Chemistry, 2014, 48, 328-331.	0.2	6
28	Composition of fulvic acids after the mechanical activation of peats. Solid Fuel Chemistry, 2016, 50, 7-11.	0.2	6
29	Mechanochemical solid-phase reactions of humic acids with metal ions. Solid Fuel Chemistry, 2016, 50, 76-80.	0.2	6
30	Physicochemical and spectroluminescent properties of the humic acids of coals. Solid Fuel Chemistry, 2017, 51, 1-5.	0.2	6
31	Composition of the water-soluble humic preparations of mechanically activated brown coals. Solid Fuel Chemistry, 2017, 51, 51-56.	0.2	6
32	Change in the Rheological Properties of Oil Disperse Systems upon a Vibrational Treatment. Colloid Journal, 2005, 67, 602-605.	0.5	5
33	Effect of simulated solar radiation on the interaction of humic acids with naphthalene. Russian Journal of Applied Chemistry, 2013, 86, 510-514.	0.1	5
34	Dependence of composition of asphaltene–resin–wax deposits on the water cut value. Petroleum Chemistry, 2016, 56, 765-770.	0.4	5
35	Formation of Organic Deposits in Model Petroleum Systems. Petroleum Chemistry, 2020, 60, 693-698.	0.4	5
36	Catalytic Properties of Mechanically Activated Humic Substances in Electroreduction of Oxygen. Russian Journal of Applied Chemistry, 2004, 77, 46-50.	0.1	4

#	Article	IF	CITATIONS
37	Hydrocarbons in peat-forming plants at eutrophic bogs in Western Siberia. Geochemistry International, 2008, 46, 77-84.	0.2	4
38	Activation of the biochemical processes in an oil-contaminated soil using a light-correcting film and humic acids. Eurasian Soil Science, 2011, 44, 204-210.	0.5	4
39	Adsorption properties of modified peat toward organic compounds and heavy metals. Solid Fuel Chemistry, 2013, 47, 288-291.	0.2	4
40	Formation of Humic Colloids in Aqueous Solutions at Different pH Values. Russian Journal of Physical Chemistry A, 2020, 94, 742-747.	0.1	4
41	Composition of the Resin-Asphaltene Components in the Interfacial Layers of Water-in-Oil Emulsions. Petroleum Chemistry, 2021, 61, 568-575.	0.4	4
42	Electrochemical reduction of oxygen in the presence of humic acids. Russian Journal of Physical Chemistry A, 2011, 85, 1257-1260.	0.1	3
43	Sorption properties of modified peat with respect to petroleum and heavy metals. Solid Fuel Chemistry, 2011, 45, 404-407.	0.2	3
44	Comparative study of the fragment composition of humic acids isolated from caustobioliths and soil by the mechanochemical method. Russian Journal of Applied Chemistry, 2014, 87, 1070-1076.	0.1	3
45	Interaction of Humic Acids with Organic Toxicants. Russian Physics Journal, 2016, 59, 597-603.	0.2	3
46	Evolution of Composition and Properties of Lipids of Peat in Mechanochemical Treatment. Russian Journal of Applied Chemistry, 2005, 78, 506-510.	0.1	2
47	An IR and GC-MS Study of Substances Extracted from Peat. Russian Journal of Applied Chemistry, 2005, 78, 1364-1369.	0.1	2
48	Adsorption interactions of humic acids with biocides. Russian Journal of Physical Chemistry A, 2009, 83, 1981-1985.	0.1	2
49	Redox properties and antiradical activity of humic acids under exposure to UV and visible light. Russian Journal of Applied Chemistry, 2011, 84, 820-825.	0.1	2
50	Effect of the nature of an extractant on the composition and properties of lipids extracted from peat. Solid Fuel Chemistry, 2012, 46, 212-216.	0.2	2
51	Antioxidants in peat lipids. Solid Fuel Chemistry, 2013, 47, 139-146.	0.2	2
52	The Influence of Processing Conditions on the Sedimentation Kinetics of Highly Waxy Crude Oil. Procedia Chemistry, 2015, 15, 49-53.	0.7	2
53	Effect of mechanical activation on the composition of mineral components in humic acids isolated from carbons. Russian Journal of Applied Chemistry, 2015, 88, 1311-1315.	0.1	2
54	Transformations of humic acids on the mechanical activation of peat under redox conditions. Solid Fuel Chemistry, 2015, 49, 123-127.	0.2	2

NATALIA NV YUDINA

#	Article	IF	CITATIONS
55	Investigation of the Pour Point Depression Ability of Polyalkyl Acrylate Additives After Sonication. Russian Physics Journal, 2016, 59, 1289-1294.	0.2	2
56	Characteristics of Humic Acids in a System of Geochemically Linked Bog Landscapes. Solid Fuel Chemistry, 2020, 54, 253-259.	0.2	2
57	Effect of Phase Transitions in High-Wax Crude Oil and Emulsions on Structural-and-Rheological Properties. Petroleum Chemistry, 2020, 60, 794-801.	0.4	2
58	Water-in-Oil Emulsions in Paraffinic and Resinous Oils. Petroleum Chemistry, 2022, 62, 183-190.	0.4	2
59	Changes in the Structural Characteristics and Composition of Oxidized Coal Because of Mechanochemical Action. Solid Fuel Chemistry, 2022, 56, 145-151.	0.2	2
60	Microelements in petroleums of West Kazakhstan. Petroleum Chemistry: USSR (English Translation of) Tj ETQq0	0 8 rgBT /	Overlock 10
61	Changes in the composition and coagulation ability of humic acids after mechanochemical activation of peat. Colloid Journal, 2007, 69, 604-608.	0.5	1
62	Microbial transformation of the organic matter of valley peat. Solid Fuel Chemistry, 2007, 41, 71-74.	0.2	1
63	Colloid-chemical properties and physiological activity of water-soluble humic preparations. Russian Journal of Applied Chemistry, 2016, 89, 969-974.	0.1	1
64	Aggregation of asphaltenes in the presence of dispersant S5A. Petroleum Chemistry, 2017, 57, 48-53.	0.4	1
65	Effect of resin-asphaltene substances on the stability of inverted emulsions. AIP Conference Proceedings, 2018, , .	0.3	1
66	Effect of natural surface-active substances on the rheological properties of emulsions. AIP Conference Proceedings, 2018, , .	0.3	1
67	Physicochemical Treatment of Oil Sediments in Oil Sludge Utilization. Solid Fuel Chemistry, 2021, 55, 266-271.	0.2	1
68	Changes in the Composition and Properties of Humic Substances upon the Mechanical Treatment of Coals with Mineral Salts. Solid Fuel Chemistry, 2021, 55, 229-235.	0.2	1
69	Role of Humic Acids in the Detoxification of Petroleum Hydrocarbons in Soil. Solid Fuel Chemistry, 2021, 55, 332-337.	0.2	1
70	10.1007/s11494-008-1010-z., 2010, 48, 51.		1
71	Thermochemical study of behavior of petroleum resins. Chemistry and Technology of Fuels and Oils, 1988, 24, 360-362.	0.2	0

72Biotechnological testing of the regulator activity of products of mechanochemical treatment of peat
and wood waste. Russian Agricultural Sciences, 2008, 34, 156-159.0.10

#	Article	IF	CITATIONS
73	Humic substances in the sapropelic deposits of Western Siberia. Solid Fuel Chemistry, 2010, 44, 1-4.	0.2	Ο
74	Conversion of lipids upon the mechanical degradation of lacustrine sediments. Solid Fuel Chemistry, 2010, 44, 243-246.	0.2	0
75	Antihypoxic and hemostimulating actions of a nettle extract prepared by a nanotechnological approach. Pharmaceutical Chemistry Journal, 2010, 44, 141-143.	0.3	0
76	Application of the low-frequency vibratory method for determining the paraffin crystallization onset in dispersed petroleum systems. Russian Journal of Applied Chemistry, 2012, 85, 751-754.	0.1	0
77	Effect of the mechanochemical treatment of peat on the composition of aromatic hydrocarbons separated from peat lipids. Solid Fuel Chemistry, 2013, 47, 258-262.	0.2	0
78	Prediction of the Effectiveness of Pour-Point Depressant Additives from Data on the Antioxidant Properties of Crude Oil. Chemistry and Technology of Fuels and Oils, 2015, 50, 483-488.	0.2	0
79	Characterization of the Organic Matter of Humic Acids by Pyrolytic Gas Chromatography–Mass Spectrometry. Solid Fuel Chemistry, 2018, 52, 116-120.	0.2	0
80	Structural and Mechanical Properties of Water Oil Emulsions of Highly Viscous Oils. IOP Conference Series: Materials Science and Engineering, 2019, 696, 012014.	0.3	0
81	Detoxification of oil-contaminated soils by using humic acids. IOP Conference Series: Materials Science and Engineering, 2019, 597, 012020.	0.3	0
82	Study of the optical properties of asphaltenes of wax deposits of oil-water emulsions. Journal of Physics: Conference Series, 2020, 1611, 012016.	0.3	0
83	Effect of Inhibiting Additive on the Structural-Mechanical Characteristics of Various Water-Oil Emulsions. Chemistry for Sustainable Development, 2021, 29, 177-184.	0.0	0
84	Biochemical Factors Controlling the Composition of Bog Water and Migration of Substances in the System of Geochemically Linked Mire Landscapes. Eurasian Soil Science, 2021, 54, 499-506.	0.5	0
85	10.1007/s11476-008-1006-x. , 2010, 46, 77.		0
86	Study of the Antioxidant Properties of Oils by the Voltammetric Method. Petroleum Chemistry, 2022, 62, 250-257.	0.4	0
87	Physical Treatment for the Regulation of the Physicochemical Properties of a Petrolatum-Based Composition. Solid Fuel Chemistry, 2022, 56, 152-156.	0.2	0
88	Destruction of a Water-in-Oil Emulsion under Combined Action of a Low-Frequency Acoustic Field and a Demulsifier. Petroleum Chemistry, 0, , .	0.4	0