I-Ping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5927372/publications.pdf

Version: 2024-02-01

279798 345221 1,508 65 23 36 citations h-index g-index papers 66 66 66 1616 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ammonia sensing characteristics of a cerium oxide thin film coated with platinum nanoparticles. Sensors and Actuators B: Chemical, 2022, 369, 132241.	7.8	9
2	Double-layered printable electrolytes for highly efficient dye-sensitized solar cells. Journal of Power Sources, 2021, 482, 228962.	7.8	27
3	Hydrogen sensing properties of a novel GaN/AlGaN Schottky diode decorated with palladium nanoparticles and a platinum thin film. Sensors and Actuators B: Chemical, 2021, 330, 129339.	7.8	12
4	Room-Temperature Hydrogen- and Ammonia Gas-Sensing Characteristics of a GaN-Based Schottky Diode Synthesized With a Hybrid Surface Structure. IEEE Transactions on Electron Devices, 2021, 68, 761-768.	3.0	5
5	Hydrogen sensing properties of a GaN/AlGaN-based Schottky diode with a catalytic platinum (Pt) hybrid structure. Sensors and Actuators B: Chemical, 2021, 331, 129320.	7.8	9
6	Study of a Formaldehyde Gas Sensor Based on a Sputtered Vanadium Pentoxide Thin Film Decorated with Gold Nanoparticles. ECS Journal of Solid State Science and Technology, 2021, 10, 087001.	1.8	4
7	Novel Architecture of Indoor Bifacial Dyeâ€Sensitized Solar Cells with Efficiencies Surpassing 25% and Efficiency Ratios Exceeding 95%. Advanced Optical Materials, 2021, 9, 2100936.	7.3	12
8	Insights into the deposition of nanostructured nickel oxides by amino acid chelated Complexes: Benefits of mixed side chains in the formation of nanostructures for Energy-efficient Electrochromic windows. Applied Surface Science, 2021, 568, 150914.	6.1	3
9	Study of a Highly Sensitive Formaldehyde Sensor Prepared With a Tungsten Trioxide Thin Film and Gold Nanoparticles. IEEE Transactions on Electron Devices, 2021, 68, 6422-6429.	3.0	5
10	Ammonia Gas Detection Based on CNN with Heatmap and Transfer Learning. , 2021, , .		0
11	Iron Oxyhydroxide Hierarchical Micro/Nanostructured Film as Catalyst for Electrochemical Oxygen Evolution Reaction. Analytical Sciences, 2020, 36, 27-31.	1.6	6
12	Performance Enhancement of Dye-Sensitized Solar Cells by Utilizing Carbon Nanotubes as an Electrolyte-Treating Agent. ACS Sustainable Chemistry and Engineering, 2020, 8, 1102-1111.	6.7	11
13	Study of a Palladium (Pd)/Aluminum-Doped Zinc Oxide (AZO) Hydrogen Sensor and the Kalman Algorithm for Internet-of-Things (IoT) Application. IEEE Transactions on Electron Devices, 2020, 67, 4405-4412.	3.0	12
14	Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%. Journal of Materials Chemistry A, 2020, 8, 22423-22433.	10.3	24
15	Nanometer-Thick Nickel Oxide Films Prepared from Alanine-Chelated Coordination Complexes for Electrochromic Smart Windows. ACS Applied Nano Materials, 2020, 3, 9528-9537.	5.0	11
16	Study of a platinum nanoparticle (Pt NP)/amorphous In-Ga-Zn-O (A-IGZO) thin-film-based ammonia gas sensor. Sensors and Actuators B: Chemical, 2020, 322, 128592.	7.8	17
17	Study of GaN-Based Light-Emitting Diode (LED) With a Hybrid Surface Structure. IEEE Transactions on Electron Devices, 2020, 67, 4953-4957.	3.0	2
18	Highly Efficient Dye-sensitized Solar Cells Based on Poly(vinylidene fluoride-co-hexafluoropropylene) and Montmorillonite Nanofiller-based Composite Electrolytes. Journal of Oleo Science, 2020, 69, 539-547.	1.4	3

#	Article	IF	CITATIONS
19	Highly efficient indoor light quasi-solid-state dye sensitized solar cells using cobalt polyethylene oxide-based printable electrolytes. Chemical Engineering Journal, 2020, 394, 124954.	12.7	50
20	Ammonia Sensing Performance of a GaN-Based Semiconductor Diode with a Solution-Processed Pt/GaO _{<i>x</i>} Schottky Contact. ACS Applied Electronic Materials, 2019, 1, 1474-1481.	4.3	8
21	Ammonia Sensing Performance of a GaN-Based Schottky Diode Incorporating a Platinum Thin Film and a GaOx Dielectric. IEEE Sensors Journal, 2019, 19, 10207-10213.	4.7	7
22	On the Ammonia Sensing Performance and Transmission Approach of a Platinum/Nickel Oxide/GaN-Based Metal-Oxide-Semiconductor Diode. IEEE Journal of the Electron Devices Society, 2019, 7, 476-482.	2.1	11
23	Preparation and characterization of ordered Poly(3,4-Ethylenedioxythiophene) monolayers on Au(111) surfaces. Electrochimica Acta, 2019, 323, 134818.	5.2	0
24	Hydrogen sensing characteristics of a Pd/Nickel oxide/GaN-based Schottky diode. International Journal of Hydrogen Energy, 2019, 44, 5748-5754.	7.1	15
25	Hydrogen sensing performance of a GaN-based Schottky diode with an H2O2 treatment and electroless plating approach. Sensors and Actuators B: Chemical, 2019, 296, 126599.	7.8	15
26	A new mechanism for interpreting the effect of TiO2 nanofillers in quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2019, 433, 226693.	7.8	5
27	Ammonia sensing performance of a platinum nanoparticle-decorated tungsten trioxide gas sensor. Sensors and Actuators B: Chemical, 2019, 291, 148-154.	7.8	63
28	Quasi-Solid-State Dye-Sensitized Solar Cells for Efficient and Stable Power Generation under Room Light Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 7403-7411.	6.7	35
29	Highly efficient quasi-solid-state dye-sensitized solar cells prepared by printable electrolytes for room light applications. Chemical Engineering Journal, 2019, 367, 17-24.	12.7	67
30	Study of a GaN Schottky diode based hydrogen sensor with a hydrogen peroxide oxidation approach and platinum catalytic metal. International Journal of Hydrogen Energy, 2019, 44, 32351-32361.	7.1	15
31	Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA)-based printable electrolytes. Journal of Materials Chemistry A, 2018, 6, 10085-10094.	10.3	64
32	Ammonia sensing characteristic of a Pt nanoparticle/aluminum-doped zinc oxide sensor. Sensors and Actuators B: Chemical, 2018, 267, 145-154.	7.8	32
33	Performance enhancement effects of dispersed graphene oxide sponge nanofillers on the liquid electrolytes of dye-sensitized solar cells. Carbon, 2018, 132, 71-77.	10.3	6
34	Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode. Sensors and Actuators B: Chemical, 2018, 262, 852-859.	7.8	26
35	Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sensors and Actuators B: Chemical, 2018, 256, 962-967.	7.8	104
36	Importance of Compact Blocking Layers to the Performance of Dye-Sensitized Solar Cells under Ambient Light Conditions. ACS Applied Materials & Interfaces, 2018, 10, 38900-38905.	8.0	52

#	Article	IF	CITATIONS
37	Formaldehyde Sensing Characteristics of a NiO-Based Sensor Decorated With Pd Nanoparticles and a Pd Thin Film. IEEE Transactions on Electron Devices, 2018, 65, 1956-1961.	3.0	15
38	Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode. Sensors and Actuators B: Chemical, 2017, 246, 408-414.	7.8	29
39	High-performance printable electrolytes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 9190-9197.	10.3	45
40	Hydrogen sensing performance of a Pd nanoparticle/Pd film/GaN-based diode. Sensors and Actuators B: Chemical, 2017, 247, 514-519.	7.8	23
41	Highly electrocatalytic carbon black/copper sulfide composite counter electrodes fabricated by a facile method for quantum-dot-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 23146-23157.	10.3	43
42	Highly electrocatalytic counter electrodes based on carbon black for cobalt(<scp>)ii</scp>)i(<scp>)i=/scp>)-mediated dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 240-249.</scp>	10.3	57
43	Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells. Journal of Power Sources, 2016, 325, 706-713.	7.8	25
44	Effects of TiO ₂ and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24559-24566.	8.0	27
45	Highly efficient gel-state dye-sensitized solar cells prepared using propionitrile and poly(vinylidene) Tj ETQq1 1 0.	784314 rş 7.8	gBT/Overloc
46	Nitrogen Oxide (NO ₂) Gas Sensing Performance of ZnO Nanoparticles (NPs)/Sapphire-Based Sensors. IEEE Sensors Journal, 2015, 15, 3759-3763.	4.7	14
47	On the Ammonia Gas Sensing Performance of a RF Sputtered NiO Thin-Film Sensor. IEEE Sensors Journal, 2015, 15, 3711-3715.	4.7	76
48	Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment. Sensors and Actuators B: Chemical, 2015, 211, 303-309.	7.8	28
49	An enhancement-mode pseudomorphic high electron mobility transistor prepared by an Electroless Plating (EP) and a gate-sinking approaches. Solid-State Electronics, 2015, 105, 45-50.	1.4	0
50	Hydrogen sensing characteristics of a Pt/AlGaN/GaN heterostructure field-effect transistor (HFET) prepared by sensitization, activation, and electroless plating (EP) approaches. Sensors and Actuators B: Chemical, 2015, 212, 127-136.	7.8	12
51	On a Schottky diode-type hydrogen sensor with pyramid-like Pd nanostructures. International Journal of Hydrogen Energy, 2015, 40, 9006-9012.	7.1	13
52	Characteristics enhancement of a GaAs based heterostructure field-effect transistor with an electrophoretic deposition (EPD) surface treated gate structure. Applied Surface Science, 2015, 341, 120-126.	6.1	1
53	Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application. Journal of Power Sources, 2015, 298, 385-390.	7.8	38
54	Hydrogen sensing performance of a nickel oxide (NiO) thin film-based device. International Journal of Hydrogen Energy, 2015, 40, 729-734.	7.1	39

#	Article	IF	CITATIONS
55	Hydrogen sensing characteristics of Pd/SiO2-nanoparticles (NPs)/AlGaN metal-oxide-semiconductor (MOS) diodes. International Journal of Hydrogen Energy, 2014, 39, 20313-20318.	7.1	7
56	Performance Enhancement of Quantum-Dot-Sensitized Solar Cells by Potential-Induced Ionic Layer Adsorption and Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19378-19384.	8.0	18
57	Charge Transfer and Performance Enhancement of Dye-Sensitized Solar Cells by Utilization of a Tandem Structure. Journal of Physical Chemistry C, 2014, 118, 17446-17451.	3.1	12
58	On a transistor-type hydrogen gas sensor prepared by an electrophoretic deposition (EPD) approach. International Journal of Hydrogen Energy, 2014, 39, 13320-13327.	7.1	1
59	Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor. Sensors and Actuators B: Chemical, 2014, 203, 258-262.	7.8	44
60	Comprehensive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET). Sensors and Actuators B: Chemical, 2014, 190, 913-921.	7.8	12
61	Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO ₂ Photoelectrode. Journal of Physical Chemistry C, 2012, 116, 1550-1555.	3.1	62
62	Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 17534.	6.7	62
63	Transient response of a transistor-based hydrogen sensor. Sensors and Actuators B: Chemical, 2008, 134, 750-754.	7.8	12
64	Investigation on a Pd–AlGaN/GaN Schottky Diode-Type Hydrogen Sensor With Ultrahigh Sensing Responses. IEEE Transactions on Electron Devices, 2008, 55, 3575-3581.	3.0	22
65	Hydrogen sensing properties of a Pt-oxide-GaN Schottky diode. Journal of Applied Physics, 2008, 104, .	2.5	14