
Na Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5927342/publications.pdf Version: 2024-02-01

NA LITT

#	Article	IF	CITATIONS
1	Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014, 2, 2445-2460.	10.3	1,052
2	CO ₂ â€Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability. Angewandte Chemie - International Edition, 2015, 54, 8934-8938.	13.8	276
3	A Solvothermal Route Decorated on Different Substrates: Controllable Separation of an Oil/Water Mixture to a Stabilized Nanoscale Emulsion. Advanced Materials, 2015, 27, 7349-7355.	21.0	218
4	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie - International Edition, 2018, 57, 5740-5745.	13.8	180
5	Superwetting Porous Materials for Wastewater Treatment: from Immiscible Oil/Water Mixture to Emulsion Separation. Advanced Materials Interfaces, 2017, 4, 1600029.	3.7	175
6	Antioil Ag ₃ PO ₄ Nanoparticle/Polydopamine/Al ₂ O ₃ Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 8019-8028.	6.7	134
7	A Facile Solvent-Manipulated Mesh for Reversible Oil/Water Separation. ACS Applied Materials & Interfaces, 2014, 6, 12821-12826.	8.0	131
8	One-Step Coating toward Multifunctional Applications: Oil/Water Mixtures and Emulsions Separation and Contaminants Adsorption. ACS Applied Materials & amp; Interfaces, 2016, 8, 3333-3339.	8.0	117
9	In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO ₂ nanocluster-based mesh. Nanoscale, 2016, 8, 8525-8529.	5.6	103
10	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 20113-20117.	10.3	101
11	Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. Journal of Materials Chemistry A, 2017, 5, 6740-6746.	10.3	98
12	Straightforward Oxidation of a Copper Substrate Produces an Underwater Superoleophobic Mesh for Oil/Water Separation. ChemPhysChem, 2013, 14, 3489-3494.	2.1	91
13	Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation. Journal of Materials Chemistry A, 2014, 2, 20439-20443.	10.3	78
14	Nanocomposite Deposited Membrane for Oil-in-Water Emulsion Separation with in Situ Removal of Anionic Dyes and Surfactants. Langmuir, 2017, 33, 7380-7388.	3.5	76
15	Breathing Demulsification: A Three-Dimensional (3D) Free-Standing Superhydrophilic Sponge. ACS Applied Materials & Interfaces, 2015, 7, 22264-22271.	8.0	73
16	A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation. Scientific Reports, 2015, 5, 9688.	3.3	72
17	One-Step Breaking and Separating Emulsion by Tungsten Oxide Coated Mesh. ACS Applied Materials & Interfaces, 2015, 7, 8108-8113.	8.0	57
18	Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and in situ catalytic reduction of aromatic dyes. Journal of Materials Chemistry A, 2017, 5, 15822-15827.	10.3	55

Na Liu

#	Article	IF	CITATIONS
19	Electricity-induced switchable wettability and controllable water permeation based on 3D copper foam. Chemical Communications, 2015, 51, 16237-16240.	4.1	50
20	Superwetting copper meshes based on self-organized robust CuO nanorods: efficient water purification for <i>in situ</i> oil removal and visible light photodegradation. Nanoscale, 2018, 10, 4561-4569.	5.6	47
21	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale, 2016, 8, 18558-18564.	5.6	46
22	A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Advances, 2014, 4, 32544-32548.	3.6	44
23	Fabrication of a silica gel coated quartz fiber mesh for oil–water separation under strong acidic and concentrated salt conditions. RSC Advances, 2014, 4, 11447.	3.6	42
24	A versatile CeO2/Co3O4 coated mesh for food wastewater treatment: Simultaneous oil removal and UV catalysis of food additives. Water Research, 2018, 137, 144-152.	11.3	41
25	A novel solution-controlled hydrogel coated mesh for oil/water separation based on monolayer electrostatic self-assembly. RSC Advances, 2014, 4, 51404-51410.	3.6	36
26	Facile fabrication of hydrogel coated membrane for controllable and selective oil-in-water emulsion separation. Soft Matter, 2018, 14, 2649-2654.	2.7	32
27	Polyacrylamide-Polydivinylbenzene Decorated Membrane for Sundry Ionic Stabilized Emulsions Separation via a Facile Solvothermal Method. ACS Applied Materials & Interfaces, 2016, 8, 21816-21823.	8.0	28
28	Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments. Scientific Reports, 2016, 6, 32540.	3.3	28
29	Hierarchical architectures of Ag clusters deposited biomimetic membrane: Synthesis, emulsion separation, catalytic and antibacterial performance. Separation and Purification Technology, 2020, 241, 116733.	7.9	25
30	A Facile Approach for Fabricating Dualâ€Function Membrane: Simultaneously Removing Oil from Water and Adsorbing Waterâ€6oluble Proteins. Advanced Materials Interfaces, 2016, 3, 1600291.	3.7	24
31	Recycling of PE glove waste as highly valuable products for efficient separation of oil-based contaminants from water. Journal of Materials Chemistry A, 2016, 4, 18128-18133.	10.3	24
32	Polymer-Decorated Filter Material for Wastewater Treatment: In Situ Ultrafast Oil/Water Emulsion Separation and Azo Dye Adsorption. Langmuir, 2018, 34, 13192-13202.	3.5	19
33	Highly Durable Agâ€CuO Heterostructureâ€Decorated Mesh for Efficient Oil/Water Separation and In Situ Photocatalytic Dye Degradation. Energy and Environmental Materials, 2020, , .	12.8	19
34	A MoS ₂ nanosheet-coated mesh for pH-induced multi-pollutant water remediation with <i>in situ</i> electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 6435-6441.	10.3	18
35	Construction of electron transport channels in type-I heterostructures of Bi2MoO6/BiVO4/g-C3N4 for improved charge carriers separation efficiency. Journal of Colloid and Interface Science, 2020, 567, 145-153.	9.4	18
36	Morphologyâ€Induced TiO ₂ Bandgap Change for Super Rapid Treatment of Dye Wastewater under Visible Light. Advanced Materials Technologies, 2017, 2, 1700125.	5.8	13

Na Liu

#	Article	IF	CITATIONS
37	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie, 2018, 130, 5842-5847.	2.0	13
38	PG–PEI–Ag NPs-Decorated Membrane for Pretreatment of Laboratory Wastewater: Simultaneous Removal of Water-Insoluble Organic Solvents and Water-Soluble Anionic Organic Pollutants. Langmuir, 2019, 35, 7680-7690.	3.5	9
39	Facile Fabrication of Highly Hydrophobic Onion-like Candle Soot-Coated Mesh for Durable Oil/Water Separation. Nanomaterials, 2022, 12, 761.	4.1	9
40	One-step reduction and simultaneous decoration on various porous substrates: toward oil filtration from water. RSC Advances, 2016, 6, 86019-86024.	3.6	4
41	Superwetting Ag/α-Fe2O3 anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification. Green Energy and Environment, 2024, 9, 89-103.	8.7	4