Miguel Manzano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592731/publications.pdf Version: 2024-02-01

MICHEL MANZANO

#	Article	IF	CITATIONS
1	Mesoporous Silica Nanoparticles for Drug Delivery. Advanced Functional Materials, 2020, 30, 1902634.	14.9	571
2	Confinement and Controlled Release of Bisphosphonates on Ordered Mesoporous Silica-Based Materials. Journal of the American Chemical Society, 2006, 128, 8116-8117.	13.7	410
3	Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano, 2015, 9, 11023-11033.	14.6	389
4	Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chemical Engineering Journal, 2008, 137, 30-37.	12.7	381
5	Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules, 2018, 23, 47.	3.8	338
6	New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 2010, 20, 5593.	6.7	335
7	Drug delivery from ordered mesoporous matrices. Expert Opinion on Drug Delivery, 2009, 6, 1383-1400.	5.0	164
8	Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?. Chemical Society Reviews, 2022, 51, 5365-5451.	38.1	138
9	Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Progress in Solid State Chemistry, 2008, 36, 163-191.	7.2	129
10	Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opinion on Drug Delivery, 2019, 16, 415-439.	5.0	124
11	Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage. Microporous and Mesoporous Materials, 2008, 116, 4-13.	4.4	120
12	Nanoparticles to Knockdown Osteoporosis-Related Gene and Promote Osteogenic Marker Expression for Osteoporosis Treatment. ACS Nano, 2019, 13, 5451-5464.	14.6	101
13	Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science: Materials in Medicine, 2018, 29, 65.	3.6	100
14	Recent advances in ceramic implants as drug delivery systems for biomedical applications. International Journal of Nanomedicine, 2008, 3, 403.	6.7	89
15	Mesoporous Silica Nanoparticles for the Treatment of Complex Bone Diseases: Bone Cancer, Bone Infection and Osteoporosis. Pharmaceutics, 2020, 12, 83.	4.5	89
16	The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials, 2010, 31, 8564-8573.	11.4	87
17	Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 2016, 4, 803-813.	5.4	87
18	Tuning mesoporous silica dissolution in physiological environments: a review. Journal of Materials Science, 2017, 52, 8761-8771.	3.7	87

MIGUEL MANZANO

#	Article	IF	CITATIONS
19	Osteostatin-loaded bioceramics stimulate osteoblastic growth and differentiation. Acta Biomaterialia, 2010, 6, 797-803.	8.3	85
20	Advanced Drug Delivery Vectors with Tailored Surface Properties Made of Mesoporous Binary Oxides Submicronic Spheres. Chemistry of Materials, 2010, 22, 1821-1830.	6.7	85
21	L-Trp adsorption into silica mesoporous materials to promote bone formation. Acta Biomaterialia, 2008, 4, 514-522.	8.3	84
22	Novel Method To Enlarge the Surface Area of SBA-15. Chemistry of Materials, 2007, 19, 3099-3101.	6.7	83
23	Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery. Chemical Engineering Journal, 2018, 340, 2-8.	12.7	77
24	In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 2010, 132, 442-452.	4.4	73
25	Modular â€ [~] Clickâ€inâ€Emulsion' Boneâ€Targeted Nanogels. Advanced Materials, 2013, 25, 1449-1454.	21.0	73
26	Bioceramics and pharmaceuticals: A remarkable synergy. Solid State Sciences, 2007, 9, 768-776.	3.2	69
27	Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 2019, 55, 2731-2740.	4.1	68
28	Revisiting bioceramics: Bone regenerative and local drug delivery systems. Progress in Solid State Chemistry, 2012, 40, 17-30.	7.2	67
29	Mesoporous silica nanoparticles engineered for ultrasound-induced uptake by cancer cells. Nanoscale, 2018, 10, 6402-6408.	5.6	64
30	Drug Confinement and Delivery in Ceramic Implants. Drug Metabolism Letters, 2007, 1, 37-40.	0.8	63
31	Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomaterialia, 2016, 33, 275-282.	8.3	59
32	Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 14946-14957.	8.0	59
33	pH-Responsive Mesoporous Silica and Carbon Nanoparticles for Drug Delivery. Bioengineering, 2017, 4, 3.	3.5	55
34	Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy. Nanoscale, 2017, 9, 5528-5537.	5.6	54
35	Osteoporosis Remission and New Bone Formation with Mesoporous Silica Nanoparticles. Advanced Science, 2021, 8, e2101107.	11.2	53
36	Osteostatin-loaded onto mesoporous ceramics improves the early phase of bone regeneration in a rabbit osteopenia model. Acta Biomaterialia, 2012, 8, 2317-2323.	8.3	51

MIGUEL MANZANO

#	Article	IF	CITATIONS
37	Self-immolative polymers as novel pH-responsive gate keepers for drug delivery. RSC Advances, 2017, 7, 132-136.	3.6	50
38	Synthesis of Organic-Inorganic Hybrid Particles by Sol-Gel Chemistry. Journal of Sol-Gel Science and Technology, 2004, 31, 31-36.	2.4	48
39	Bioactive Star Gels. Chemistry of Materials, 2006, 18, 5696-5703.	6.7	48
40	Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report. International Journal of Antimicrobial Agents, 2012, 40, 252-256.	2.5	48
41	Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(ε-caprolactone) films. Biomaterials, 2006, 27, 4706-4714.	11.4	44
42	Evidence of drug confinement into silica mesoporous matrices by STEM spherical aberration corrected microscopy. Chemical Communications, 2010, 46, 2956.	4.1	43
43	Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings. Acta Biomaterialia, 2011, 7, 3555-3562.	8.3	43
44	Nanoparticles Coated with Cell Membranes for Biomedical Applications. Biology, 2020, 9, 406.	2.8	42
45	Tuning dual-drug release from composite scaffolds for bone regeneration. International Journal of Pharmaceutics, 2015, 486, 30-37.	5.2	39
46	Management of Cancer in the Older Age Person: An Approach to Complex Medical Decisions. Oncologist, 2017, 22, 335-342.	3.7	39
47	Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape. ACS Applied Materials & Interfaces, 2021, 13, 9656-9666.	8.0	39
48	Self-immolative chemistry in nanomedicine. Chemical Engineering Journal, 2018, 340, 24-31.	12.7	37
49	Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery. Journal of Biomedical Materials Research - Part A, 2013, 101A, 213-221.	4.0	36
50	Nanoparticles for the treatment of osteoporosis. AIMS Bioengineering, 2017, 4, 259-274.	1.1	36
51	Bioactive CaOâ~'SiO2â~'PDMS Coatings on Ti6Al4V Substrates. Chemistry of Materials, 2005, 17, 1591-1596.	6.7	35
52	From proof-of-concept material to PEGylated and modularly targeted ultrasound-responsive mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2785-2794.	5.8	32
53	Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections. Scientific Reports, 2016, 6, 19525.	3.3	31
54	Preparation of Silsesquioxane Particles via a Nonhydrolytic Solâ^'Gel Route. Chemistry of Materials, 2005, 17, 875-880.	6.7	26

MIGUEL MANZANO

#	Article	IF	CITATIONS
55	Suicide-gene transfection of tumor-tropic placental stem cells employing ultrasound-responsive nanoparticles. Acta Biomaterialia, 2019, 83, 372-378.	8.3	26
56	P-Containing ORMOSILS for bone reconstruction. Progress in Solid State Chemistry, 2006, 34, 267-277.	7.2	23
57	Novel method to synthesize ordered mesoporous silica with high surface areas. Solid State Sciences, 2008, 10, 408-415.	3.2	23
58	Anti-Osteoporotic Drug Release from Ordered Mesoporous Bioceramics: Experiments and Modeling. AAPS PharmSciTech, 2011, 12, 1193-1199.	3.3	22
59	Carbon nanotubes—mesoporous silica composites as controllable biomaterials. Journal of Materials Chemistry, 2009, 19, 7745.	6.7	21
60	Hybrid Injectable Sol-Gel Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying pH-Sensitive Mesoporous Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Frontiers in Bioengineering and Biotechnology, 2020, 8, 384.	4.1	20
61	Mechanical properties of organically modified silicates for bone regeneration. Journal of Materials Science: Materials in Medicine, 2009, 20, 1795-1801.	3.6	18
62	Silica-Based Ordered Mesoporous Materials for Biomedical Applications. Key Engineering Materials, 2008, 377, 133-150.	0.4	14
63	Antibacterial effect of antibiotic-loaded SBA-15 on biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. Journal of Antibiotics, 2017, 70, 259-263.	2.0	10
64	Controlled Release With Emphasis on Ultrasound-Induced Release. The Enzymes, 2018, 43, 101-122.	1.7	9
65	Novel insights into mesoporous ordered delivery systems for biotechnological applications. Studies in Surface Science and Catalysis, 2008, 174, 13-20.	1.5	5
66	Carbon Nanotubes: A Solution for Processing Smart Biomaterials. Key Engineering Materials, 2010, 441, 3-29.	0.4	5
67	Characterization of a Mesoporous Silica Nanoparticle Formulation Loaded with Mitomycin C Lipidic Prodrug (MLP) and In Vitro Comparison with a Clinical-Stage Liposomal Formulation of MLP. Pharmaceutics, 2022, 14, 1483.	4.5	3
68	Chronology of Global Success: 20 Years of Prof Vallet-RegÃ-Solving Questions. Pharmaceutics, 2021, 13, 2179.	4.5	2
69	Synthesis of Ormosil Particles by Non-Hydrolytic Sol-Gel Chemistry. , 2005, , 104-110.		0