Jiangbin Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592673/publications.pdf

Version: 2024-02-01

		331538	1	155592	
58	5,533	21		55	
papers	citations	h-index		g-index	
EO	58	EO		7101	
58	30	58		7181	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Facile synthesis of poly(BODIPY)s via solid state polymerization and application in temperature sensor. Polymer, 2022, 241, 124514.	1.8	2
2	Fabrication of three-dimentional triarylmethane polymers derivatives as efficient counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2022, 408, 139917.	2.6	3
3	Developing versatile and highly selective chemosensor for amines detection based on bis-thiophene methane containing cyclopalladated compounds. Sensors and Actuators B: Chemical, 2022, 359, 131561.	4.0	1
4	High-performance and stable inverted perovskite solar cells using low-temperature solution-processed CuNbOx hole transport layer. Journal of Power Sources, 2021, 483, 229194.	4.0	12
5	Two-dimensional nano-layered materials as multi-responsive chemosensors constructed by carbazole-and fluorene-based polyaniline-like derivatives. Journal of Hazardous Materials, 2021, 410, 124544.	6.5	6
6	FTO-free and low-Pt-loading counter electrodes for dye-sensitized solar cells based on chemical bath deposited microstructured nickel layer. Electrochimica Acta, 2021, 369, 137641.	2.6	0
7	UV-irradiation polymerization of bis-EDOT methane derivatives and their application for Br2 detection. Polymer, 2021, 226, 123808.	1.8	5
8	Developing strong NIR absorption materials through linear planar π-conjugated cyclopalladated complex dimers. Dalton Transactions, 2021, 50, 1344-1348.	1.6	7
9	Low-temperature solution-combustion-processed Zn-Doped Nb2O5 as an electron transport layer for efficient and stable perovskite solar cells. Journal of Power Sources, 2020, 448, 227419.	4.0	19
10	Development of highly efficient chemosensors for Cu2+ and N2H4 detection based on 2D polyaniline derivatives by template-free chemical polymerization method. Journal of Hazardous Materials, 2020, 389, 121902.	6.5	18
11	Methyl functionalization on conjugated side chains for polymer solar cells processed from non-chlorinated solvents. Journal of Materials Chemistry C, 2020, 8, 11532-11539.	2.7	14
12	Hydrophilic ultrafiltration membranes with surface-bound eosin Y for an integrated synthesis-separation system of aqueous RAFT photopolymerization. Journal of Materials Chemistry A, 2020, 8, 9825-9831.	5.2	25
13	A novel D-A-D-typed rod-like fluorescent material for efficient $Fe(\hat{a}\hat{c})$ and $Cr(\hat{a}\hat{s})$ detection: Synthesis, structure and properties. Sensors and Actuators B: Chemical, 2020, 320, 128377.	4.0	12
14	Novel synthesis of poly(3,4-dinitro-thiophen-2-yl arylamine) derivatives via facile C–Br/N–H bulk polycondensation and its application of thermalsensor. Polymer, 2020, 201, 122550.	1.8	0
15	In-situ synthesis of organic-inorganic hybrid thin film of PEDOT/V2O5 as hole transport layer for polymer solar cells. Solar Energy, 2019, 190, 63-68.	2.9	11
16	Synthesis of Conjugated Main-Chain Ferrocene-Containing Polymers through Melt-State Polymerization. Organometallics, 2019, 38, 2972-2978.	1.1	9
17	Synthesis of Metal-Containing Poly(thiophene methines) via Solid- and Melt-State Polymerization and Their Related Applications as Highly Sensitive Ni ²⁺ Chemosensors. Organometallics, 2019, 38, 647-653.	1.1	7
18	Carbazole and fluorene polyaniline derivatives: Synthesis, properties and application as multiple stimuli-responsive fluorescent chemosensor. Talanta, 2019, 204, 592-601.	2.9	15

#	Article	IF	CITATIONS
19	Facile synthesis of poly(3,4-ethylenedioxythiophene) and poly(bis-3,4-ethylenedioxythiophene) via UV-irradiation polymerization and their reduction/iodine oxidation post-treatment for the application as counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2019, 313, 505-512.	2.6	12
20	The facile modification of PEDOT:PSS buffer layer by polyethyleneglycol and their effects on inverted perovskite solar cell. Solar Energy, 2019, 186, 398-403.	2.9	22
21	Nitrogen atom free polythiophene derivative as an efficient chemosensor for highly selective and sensitive Cu2+ and Ag+ detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 218, 76-84.	2.0	15
22	Exploring functionalized polythiophene derivatives based on thiophene-linker-thiophene platform, analysis of prototype monomer crystal for C Br/C H bulk polycondensation and its application for acid detection. Polymer, 2019, 168, 70-76.	1.8	9
23	Controllable Synthesis of Sc ₃ N@C ₇₈ Microspindles with Excellent Electrophotonic Properties. ACS Applied Energy Materials, 2019, 2, 1489-1493.	2.5	7
24	Synthesis and application of poly(bis-3,4-ethylenedioxythiophene methine)s as novel counter electrodes in dye-sensitized solar cells. Solar Energy, 2018, 173, 1189-1196.	2.9	4
25	Functionalization of poly(bisâ€thiophene methine)s via facile C–C bulk polymerization and their application as chemosensors for acid detection. Journal of Polymer Science Part A, 2018, 56, 1676-1683.	2.5	14
26	Influence of Sheet Resistance Effect on Poly(3,4-ethylenedioxythiophene) Counter Electrode for Dye-Sensitized Solar Cell. Electrochimica Acta, 2017, 242, 219-226.	2.6	20
27	Exploring novel poly(thiopheneâ€3â€ylâ€amine) through facile self acid assistedâ€polycondensation. Journal of Polymer Science Part A, 2017, 55, 4003-4012.	2.5	5
28	An integrative method to prepare low-platinum/fluorine doped tin oxide counter electrode for cost-effective dye-sensitized solar cells. Solar Energy, 2017, 155, 593-600.	2.9	2
29	Effect of flexible linker length in 3,4-ethylenedioxythiophene derivatives for solid state polymerization. RSC Advances, 2015, 5, 16292-16301.	1.7	8
30	Influence of benzene ring number attached on non-conjugated 3,4-ethylenedioxythiophene derivatives for solid-state polymerization. RSC Advances, 2015, 5, 70417-70423.	1.7	3
31	Investigation of benzo(1,2-b:4,5-b′)dithiophene as a spacer in organic dyes for high efficient dye-sensitized solar cell. Organic Electronics, 2015, 25, 245-253.	1.4	11
32	Investigation of the substitution effect on poly(bis-3,4-ethylenedioxythiophene methine)s through solid state polymerization. RSC Advances, 2015, 5, 103841-103851.	1.7	6
33	Effect of monomers' structure on self-acid-assisted polycondensation for the synthesis of poly(3,4-ethylenedioxythiophene) and homopolythiophene. Polymer Chemistry, 2015, 6, 1014-1022.	1.9	11
34	Synthesis and investigation of novel thiophene derivatives containing heteroatom linkers for solid state polymerization. RSC Advances, 2014, 4, 8011.	1.7	20
35	Parallel design strategy and rational study of crystal engineering of novel 3,4-ethylenedioxythiophene derivatives for solid state polymerization. RSC Advances, 2014, 4, 29032.	1.7	8
36	Worldwide outdoor round robin study of organic photovoltaic devices and modules. Solar Energy Materials and Solar Cells, 2014, 130, 281-290.	3.0	23

#	Article	IF	CITATIONS
37	Solid state synthesis of poly(3,4-ethylenedioxythiophene) as counter electrode for dye-sensitized solar cell. Journal of Power Sources, 2014, 248, 1234-1240.	4.0	28
38	Facile synthesis of poly(3,4-ethylenedioxythiophene) by acid-assisted polycondensation of 5-bromo-2,3-dihydro-thieno[3,4-b][1,4]dioxine. Synthetic Metals, 2013, 175, 97-102.	2.1	31
39	Optimization of plastic crystal ionic liquid electrolyte for solid-state dye-sensitized solar cell. Electrochimica Acta, 2013, 94, 1-6.	2.6	16
40	An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2013, 107, 231-237.	2.6	15
41	Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt. Journal of Materials Chemistry, 2011, 21, 16448.	6.7	41
42	Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 2011, 21, 4644.	6.7	201
43	Solid-state dye-sensitized solar cells fabricated by coupling photoelectrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) with silver-paint on cathode. Chemical Communications, 2011, 47, 3120.	2.2	28
44	Strategy to improve the performance of dye-sensitized solar cells: Interface engineering principle. Solar Energy, 2011, 85, 3143-3159.	2.9	65
45	A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature. Nanoscale, 2011, 3, 3900.	2.8	24
46	A novel Cul-based iodine-free gel electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 5554-5560.	2.6	15
47	For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials, 2010, 22, E135-8.	11.1	3,509
48	Nanoporous Polyporphyrin as Adsorbent for Hydrogen Storage. Macromolecules, 2010, 43, 3325-3330.	2.2	84
49	Novel Counter Electrode V ₂ O ₅ /Al for Solid Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS	4.0	68
50	Influence of Doped Anions on Poly(3,4-ethylenedioxythiophene) as Hole Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008, 130, 1258-1263.	6.6	263
51	Effect of Doping Anions' Structures on Poly(3,4-ethylenedioxythiophene) as Hole Conductors in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 11569-11574.	1.5	26
52	Sputtered Nb2O5as a Novel Blocking Layer at Conducting Glass/TiO2Interfaces in Dye-Sensitized Ionic Liquid Solar Cells. Journal of Physical Chemistry C, 2007, 111, 8092-8097.	1.5	143
53	The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. Journal of Materials Chemistry, 2007, 17, 2845.	6.7	200
54	Sputtered Nb2O5as an effective blocking layer at conducting glass and TiO2interfaces in ionic liquid-based dye-sensitized solar cells. Chemical Communications, 2007, , 138-140.	2.2	78

#	Article	IF	CITATION
55	Fabrication and characterization of thin Nb2O5 blocking layers for ionic liquid-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 120-127.	2.0	78
56	Deposition of a Thin Film of TiOxfrom a Titanium Metal Target as Novel Blocking Layers at Conducting Glass/TiO2Interfaces in Ionic Liquid Mesoscopic TiO2Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2006, 110, 25222-25228.	1.2	116
57	Importance of Blocking Layers at Conducting Glass/TiO2Interfaces in Dye-sensitized Ionic-liquid Solar Cells. Chemistry Letters, 2006, 35, 252-253.	0.7	64
58	Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes. Solar Energy Materials and Solar Cells, 2006, 90, 944-952.	3.0	74