Omar Qasaimeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switchable resonance in vertical dual-cavity structure containing graphene. Optical and Quantum Electronics, 2021, 53, 1.	3.3	0
2	Ultrafast and wide tunable VCSEL using graphene passive cavity. Optical and Quantum Electronics, 2020, 52, 1.	3.3	2
3	Using graphene to tune vertical-cavity surface-emitting lasers. Optical and Quantum Electronics, 2020, 52, 1.	3.3	2
4	An analytical model for vertical dual-cavity quantum-dot optical amplifiers. Optical and Quantum Electronics, 2019, 51, 1.	3.3	1
5	All-optical multistability using cross-gain modulation in quantum-dot distributed feedback semiconductor optical amplifier. Optical and Quantum Electronics, 2018, 50, 1.	3.3	3
6	Multichannel and Multistate All-Optical Switch Using Quantum-Dot and Sample-Grating Semiconductor Optical Amplifier. Electronics (Switzerland), 2018, 7, 166.	3.1	2
7	Cross-Gain Modulation in Bistable Quantum-Dot VCSOAs. IEEE Photonics Technology Letters, 2017, 29, 342-345.	2.5	1
8	Contrast ratio and hysteresis width of optical bistability in quantum-dot vertical-cavity semiconductor optical amplifiers integrated with MEMS membrane. Optical and Quantum Electronics, 2017, 49, 1.	3.3	1
9	Simple semi-analytical model for bistable cross-gain modulation in quantum dot VCSOAs. Optical and Quantum Electronics, 2017, 49, 1.	3.3	0
10	Analysis of Quantum Dot Vertical Cavity Semiconductor Optical Amplifier with Saturable Absorber. Applied Mechanics and Materials, 2016, 850, 100-104.	0.2	0
11	Novel Tunable Bistable Quantum-Dot Vertical-Cavity Semiconductor Optical Amplifiers. IEEE Photonics Technology Letters, 2016, 28, 1553-1556.	2.5	4
12	Bistability characteristics of different types of optical modes amplified by quantum dot vertical cavity semiconductor optical amplifiers. Optics Communications, 2016, 364, 115-122.	2.1	2
13	Novel closed-form solution for spin-polarization in quantum dot VCSEL. Optics Communications, 2015, 350, 83-89.	2.1	11
14	Effect of doping and energy detuning on the gain and crosstalk of quantum dot gain-clamped semiconductor optical amplifiers. Optical and Quantum Electronics, 2015, 47, 2921-2936.	3.3	0
15	Effect of doping on the polarization characteristics of spin-injected quantum dot VCSEL. Optical and Quantum Electronics, 2015, 47, 465-476.	3.3	7
16	Gain-Clamped Quantum Dot Semiconductor Optical Amplifiers. International Journal of Computer and Electrical Engineering, 2014, 6, 271-274.	0.2	0
17	Broadband gain-clamped linear quantum dash optical amplifiers. Optical and Quantum Electronics, 2013, 45, 1277-1286.	3.3	3
18	Wide wavelength conversion in P-type doped quantum dot semiconductor optical amplifiers. Optics Communications, 2013, 305, 1-7.	2.1	1

OMAR QASAIMEH

#	Article	IF	CITATIONS
19	Cross-gain modulation in closely spaced energy states quantum dash semiconductor optical amplifiers. Optics Communications, 2011, 284, 4635-4641.	2.1	1
20	Efficiency of four-wave mixing of doped closely spaced energy states quantum dash semiconductor optical amplifiers. Optical Engineering, 2011, 50, 094203.	1.0	0
21	Small-signal parameters of quantum dash lasers with multiple coupled energy states. Optical Engineering, 2010, 49, 114202.	1.0	Ο
22	Differential Gain of Closely Spaced Energy States in Quantum Dashes. Journal of Lightwave Technology, 2010, 28, 1906-1912.	4.6	3
23	Vertical coupling in multiple stacks quantum-dot semiconductor optical amplifiers. Journal Physics D: Applied Physics, 2009, 42, 234001.	2.8	1
24	Theoretical stability analysis of quantum dash distributed Bragg reflector lasers. Optical Engineering, 2009, 48, 124202.	1.0	4
25	Dynamics of optical pulse amplification and saturation in multiple state quantum dot semiconductor optical amplifiers. Optical and Quantum Electronics, 2009, 41, 99-111.	3.3	3
26	Effect of Doping on the Optical Characteristics of Quantum-Dot Semiconductor Optical Amplifiers. Journal of Lightwave Technology, 2009, 27, 1978-1984.	4.6	36
27	Low-Current N-Type Quantum Dash Semiconductor Optical Amplifiers. IEEE Photonics Technology Letters, 2009, 21, 1390-1392.	2.5	6
28	Analytical Model for Cross-Gain Modulation and Crosstalk in Quantum-Well Semiconductor Optical Amplifiers. Journal of Lightwave Technology, 2008, 26, 449-456.	4.6	5
29	Novel Closed-Form Model for Multiple-State Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2008, 44, 652-657.	1.9	25
30	Linewidth enhancement factor of quantumdot lasers. Optical and Quantum Electronics, 2005, 37, 495-507.	3.3	22
31	Characteristics of wavelength conversion of short optical pulses in quantum dot semiconductor optical amplifiers. Optical and Quantum Electronics, 2005, 37, 661-673.	3.3	3
32	Modulation bandwidth of inhomogeneously broadened InAs/GaAs quantum dot lasers. Optics Communications, 2004, 236, 387-394.	2.1	2
33	An analytical model for quantum dot semiconductor optical amplifiers. Optics Communications, 2003, 222, 277-287.	2.1	11
34	Room-temperature far-infrared emission from a self-organized InGaAs/GaAs quantum-dot laser. Applied Physics Letters, 2000, 76, 3355-3357.	3.3	32
35	Bias-controlled wavelength switching in coupled-cavity In0.4Ga0.6As/GaAs self-organized quantum dot lasers. Applied Physics Letters, 1999, 74, 783-785.	3.3	31
36	Analysis of transient response of light amplifying optical switch. Optics Communications, 1997, 135, 128-132.	2.1	1

#	Article	IF	CITATIONS
37	Effect of impact ionization coefficient ratio on gain and frequency response of an avalanche photodiode. Optics Communications, 1994, 109, 422-427.	2.1	0