Georges Hadziioannou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925978/publications.pdf Version: 2024-02-01

2.2

9

#	Article	IF	CITATIONS
1	An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces. Journal of Colloid and Interface Science, 2022, 609, 375-383.	5.0	4
2	Limiting Relative Permittivity "Burn-in―in Polymer Ferroelectrics via Phase Stabilization. ACS Macro Letters, 2022, 11, 410-414.	2.3	1
3	Synthesis and Characterization of Vanillin-Based ĩ€-Conjugated Polyazomethines and Their Oligomer Model Compounds. Molecules, 2022, 27, 4138.	1.7	2
4	Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via One‣tep Molecular Engineering. Advanced Functional Materials, 2021, 31, .	7.8	21
5	Tailoring fluorinated electroactive polymers toward specific applications. Colloid and Polymer Science, 2021, 299, 457-464.	1.0	1
6	Phase diagram of poly(VDF-ter-TrFE-ter-CTFE) copolymers: Relationship between crystalline structure and material properties. Polymer, 2021, 213, 123203.	1.8	16
7	Non-destructive depth-dependent morphological characterization of ferroelectric:semiconducting polymer blend films. Colloid and Polymer Science, 2021, 299, 551-560.	1.0	2
8	PEDOT:Tos electronic and thermoelectric properties: lessons from two polymerization processes. Journal of Materials Chemistry C, 2021, 9, 7417-7425.	2.7	10
9	Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 11224-11236.	4.0	10
10	Delamination and Wrinkling of Flexible Conductive Polymer Thin Films. Advanced Functional Materials, 2021, 31, 2009039.	7.8	14
11	Optical Gain in Semiconducting Polymer Nano and Mesoparticles. Molecules, 2021, 26, 1138.	1.7	0
12	Flexible Thin Films: Delamination and Wrinkling of Flexible Conductive Polymer Thin Films (Adv. Funct.) Tj ETQq0	0 9.ggBT /	Overlock 10
13	Biohybrid plants with electronic roots <i>via in vivo</i> polymerization of conjugated oligomers. Materials Horizons, 2021, 8, 3295-3305.	6.4	14
14	Electrocaloric Enhancement Induced by Cocrystallization of Vinylidene Difluoride-Based Polymer Blends. ACS Macro Letters, 2021, 10, 1555-1562.	2.3	5
15	Multifunctional Top-Coats Strategy for DSA of High-ï‡ Block Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 11-16.	0.1	2

17 Rapid Self-Assembly and Sequential Infiltration Synthesis of High χ Fluorine-Containing Block Copolymers. Macromolecules, 2020, 53, 6246-6254.

Optical Alignment of Si-Containing Nanodomains Formed by Photoresponsive Amorphous Block Copolymer Thin Films. Macromolecules, 2020, 53, 68-77.

18Thiophene-Based Trimers for In Vivo Electronic Functionalization of Tissues. ACS Applied Electronic
Materials, 2020, 2, 4065-4071.2.019

16

Georges Hadziioannou

#	Article	IF	CITATIONS
19	Large area Al ₂ O ₃ –Au raspberry-like nanoclusters from iterative block-copolymer self-assembly. RSC Advances, 2020, 10, 41088-41097.	1.7	5
20	Strategy for Enhancing Ultrahigh-Molecular-Weight Block Copolymer Chain Mobility to Access Large Period Sizes (>100 nm). Langmuir, 2020, 36, 13872-13880.	1.6	14
21	Cyan Ni _{1–<i>x</i>} Al _{2+2<i>x</i>/3} â−i _{<i>x</i>/3} O ₄ Single-Phase Pigment Synthesis and Modification for Electrophoretic Ink Formulation. ACS Omega, 2020, 5, 18651-18661.	1.6	3
22	Design of Potassium‣elective Mixed Ion/Electron Conducting Polymers. Macromolecular Rapid Communications, 2020, 41, e2000134.	2.0	12
23	Upgrading the chemistry of ï€-conjugated polymers toward more sustainable materials. Journal of Materials Chemistry C, 2020, 8, 9792-9810.	2.7	36
24	Divanillin-Based Polyazomethines: Toward Biobased and Metal-Free π-Conjugated Polymers. ACS Omega, 2020, 5, 5176-5181.	1.6	22
25	High and Temperatureâ€Independent Dielectric Constant Dielectrics from PVDFâ€Based Terpolymer and Copolymer Blends. Advanced Electronic Materials, 2020, 6, 1901250.	2.6	15
26	Thiophene-Based Aldehyde Derivatives for Functionalizable and Adhesive Semiconducting Polymers. ACS Applied Materials & Interfaces, 2020, 12, 8695-8703.	4.0	13
27	p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 1393-1401.	2.5	60
28	Photopatternable High-k Fluoropolymer Dielectrics Bearing Pendent Azido Groups. Macromolecules, 2019, 52, 5769-5776.	2.2	11
29	Periodic Bicontinuous Structures Formed on the Top Surface of Asymmetric Triblock Terpolymer Thick Films. ACS Macro Letters, 2019, 8, 923-930.	2.3	6
30	Tuning the Rheology of Conducting Polymer Inks for Various Deposition Processes. Chemistry of Materials, 2019, 31, 6936-6944.	3.2	29
31	Introducing Functionality to Fluorinated Electroactive Polymers. Macromolecules, 2019, 52, 8503-8513.	2.2	5
32	Ferroelectricity in Undoped ZnO Nanorods. Journal of Physical Chemistry C, 2019, 123, 29436-29444.	1.5	7
33	Post-functionalization of polyvinylcarbazoles: An open route towards hole transporting materials for perovskite solar cells. Solar Energy, 2019, 193, 878-884.	2.9	8
34	Size-Dependent Photophysical Behavior of Low Bandgap Semiconducting Polymer Particles. Frontiers in Chemistry, 2019, 7, 409.	1.8	4
35	High refractive index in low metal content nanoplasmonic surfaces from self-assembled block copolymer thin films. Nanoscale Advances, 2019, 1, 849-857.	2.2	14
36	Bicontinuous Network Nanostructure with Tunable Thickness Formed on Asymmetric Triblock Terpolymer Thick Films. Macromolecules, 2019, 52, 4413-4420.	2.2	10

#	Article	IF	CITATIONS
37	Tailoring the Chemical Composition of LiMPO ₄ (M = Mg, Co, Ni) Orthophosphates To Design New Inorganic Pigments from Magenta to Yellow Hue. Inorganic Chemistry, 2019, 58, 7499-7510.	1.9	16
38	Synthesis of Carboxyl-EDOT as a Versatile Addition and Additive to PEDOT:PSS. ACS Macro Letters, 2019, 8, 285-288.	2.3	7
39	Thermal behavior of poly(VDF-ter-TrFE-ter-CTFE) copolymers: Influence of CTFE termonomer on the crystal-crystal transitions. Polymer, 2019, 161, 64-77.	1.8	23
40	Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials, 2018, 19, 336-369.	2.8	162
41	Materials for Transparent Electrodes: From Metal Oxides to Organic Alternatives. Advanced Electronic Materials, 2018, 4, 1700412.	2.6	114
42	Surface relief gratings formed by microphase-separated disperse red 1 acrylate-containing diblock copolymers. Polymer, 2018, 137, 378-384.	1.8	6
43	Photophysics, electronic structure and solar cell performance of a donor-acceptor poly(N-dodecyl-2,7-carbazole-alt-benzothiadiazole) copolymer. Organic Electronics, 2018, 59, 202-212.	1.4	4
44	Aqueous PCDTBT:PC ₇₁ BM Photovoltaic Inks Made by Nanoprecipitation. Macromolecular Rapid Communications, 2018, 39, 1700504.	2.0	22
45	Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application. Applied Surface Science, 2018, 428, 870-876.	3.1	12
46	Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism. Organic Electronics, 2018, 52, 335-341.	1.4	73
47	Enhancing the ferroelectric performance of P(VDF-co-TrFE) through modulation of crystallinity and polymorphism. Polymer, 2018, 149, 66-72.	1.8	28
48	Poly(arylene vinylene) Synthesis via a Precursor Step-Growth Polymerization Route Involving the Ramberg–BA¤klund Reaction as a Key Post-Chemical Modification Step. Macromolecules, 2018, 51, 5852-5862.	2.2	9
49	Photoactive Donor–Acceptor Composite Nanoparticles Dispersed in Water. Langmuir, 2017, 33, 1507-1515.	1.6	16
50	Highly Ordered Nanoring Arrays Formed by Templated Siâ€Containing Triblock Terpolymer Thin Films. Small, 2017, 13, 1603184.	5.2	19
51	How To Choose Polyelectrolytes for Aqueous Dispersions of Conducting PEDOT Complexes. Macromolecules, 2017, 50, 1959-1969.	2.2	45
52	Templated Subâ€100â€nmâ€Thick Doubleâ€Gyroid Structure from Siâ€Containing Block Copolymer Thin Films. Small, 2017, 13, 1603777.	5.2	16
53	Optical properties of donor–acceptor conjugated copolymers: A computational study. Chemical Physics Letters, 2017, 678, 9-16.	1.2	8
54	Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility. Journal of Chemical Physics, 2017, 147, 134904.	1.2	21

#	Article	IF	CITATIONS
55	All inkjet-printed piezoelectric electronic devices: energy generators, sensors and actuators. Journal of Materials Chemistry C, 2017, 5, 9963-9966.	2.7	74
56	Synthesis of charged hybrid particles via dispersion polymerization in nonpolar media for color electrophoretic display application. Journal of Polymer Science Part A, 2017, 55, 338-348.	2.5	7
57	Recent Achievements in Sub-10 nm DSA Lithography for Line/Space Patterning. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 69-75.	0.1	5
58	Anisotropic Lithium Ion Conductivity in Singleâ€ion Diblock Copolymer Electrolyte Thin Films. Macromolecular Rapid Communications, 2016, 37, 221-226.	2.0	7
59	Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 147-151.	2.4	63
60	Archimedean Tilings and Hierarchical Lamellar Morphology Formed by Semicrystalline Miktoarm Star Terpolymer Thin Films. ACS Nano, 2016, 10, 4055-4061.	7.3	21
61	Block Copolymers: Laterally Ordered Sub-10 nm Features Obtained From Directed Self-Assembly of Si-Containing Block Copolymer Thin Films (Small 48/2015). Small, 2015, 11, 6376-6376.	5.2	1
62	Low Bandgap Semiconducting Copolymer Nanoparticles by Suzuki Crossâ€Coupling Polymerization in Alcoholic Dispersed Media. Macromolecular Rapid Communications, 2015, 36, 1816-1821.	2.0	18
63	Laterally Ordered Sub-10 nm Features Obtained From Directed Self-Assembly of Si-Containing Block Copolymer Thin Films. Small, 2015, 11, 6377-6383.	5.2	25
64	An Alternative Anionic Polyelectrolyte for Aqueous PEDOT Dispersions: Toward Printable Transparent Electrodes. Angewandte Chemie - International Edition, 2015, 54, 8506-8510.	7.2	44
65	A well-defined polyelectrolyte and its copolymers by reversible addition fragmentation chain transfer (RAFT) polymerization: synthesis and applications. RSC Advances, 2015, 5, 98559-98565.	1.7	7
66	Optimization of Magnetic Inks Made of <i>L</i> 1 ₀ -Ordered FePt Nanoparticles and Polystyrene- <i>block</i> -Poly(ethylene oxide) Copolymers. Langmuir, 2015, 31, 6675-6680.	1.6	10
67	Synthesis and structure–property relationship of carbazoleâ€≺i>altâ€benzothiadiazole copolymers. Journal of Polymer Science Part A, 2015, 53, 2059-2068.	2.5	17
68	Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe. Journal of Applied Physics, 2015, 117, .	1.1	7
69	Synthesis of a Conductive Copolymer and Phase Diagram of Its Suspension with Single-Walled Carbon Nanotubes by Microfluidic Technology. Macromolecules, 2015, 48, 7473-7480.	2.2	20
70	Subâ€10 nm Features Obtained from Directed Selfâ€Assembly of Semicrystalline Polycarbosilaneâ€Based Block Copolymer Thin Films. Advanced Materials, 2015, 27, 261-265.	11.1	63
71	Probing Self-Assembly of Cylindrical Morphology Block Copolymer Using in Situ and ex Situ Grazing Incidence Small-Angle X-ray Scattering: The Attractive Case of Graphoepitaxy. Macromolecules, 2014, 47, 7221-7229.	2.2	22
72	Metal Residues in Semiconducting Polymers: Impact on the Performance of Organic Electronic Devices. ACS Macro Letters, 2014, 3, 1134-1138.	2.3	102

#	Article	IF	CITATIONS
73	Preparation of Water-Free PEDOT Dispersions in the Presence of Reactive Polyisoprene Stabilizers. Langmuir, 2014, 30, 12474-12482.	1.6	8
74	Microstructure and Optoelectronic Properties of P3HT- <i>b</i> -P4VP/PCBM Blends: Impact of PCBM on the Copolymer Self-Assembly. Macromolecules, 2013, 46, 8824-8831.	2.2	22
75	Synthesis of functional polymer particles by dispersion polymerization in organic media: A tool toward stable electrophoretic inks. Journal of Polymer Science Part A, 2013, 51, 4608-4617.	2.5	12
76	Hierarchical assembly of magnetic L10-ordered FePt nanoparticles in block copolymer thin films. Journal of Materials Chemistry C, 2013, 1, 1317-1321.	2.7	17
77	Synthesis of hybrid semiconducting polymer–metal latexes. Polymer Chemistry, 2013, 4, 615-622.	1.9	20
78	Crystallization-Driven Enhancement in Photovoltaic Performance through Block Copolymer Incorporation into P3HT:PCBM Blends. Macromolecules, 2013, 46, 3015-3024.	2.2	38
79	Nanoscale Block Copolymer Ordering Induced by Visible Interferometric Micropatterning: A Route towards Large Scale Block Copolymer 2D Crystals. Advanced Materials, 2013, 25, 213-217.	11.1	40
80	Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation. Polymer, 2012, 53, 5045-5051.	1.8	76
81	Facile and versatile synthesis of rodâ€coil poly(3â€hexylthiophene)â€based block copolymers by nitroxideâ€mediated radical polymerization. Journal of Polymer Science Part A, 2012, 50, 2463-2470.	2.5	13
82	Design of Wellâ€Defined Monofunctionalized Poly(3â€hexylthiophene)s: Toward the Synthesis of Semiconducting Graft Copolymers. Macromolecular Rapid Communications, 2012, 33, 703-709.	2.0	20
83	Block Copolymer as a Nanostructuring Agent for Highâ€Efficiency and Annealingâ€Free Bulk Heterojunction Organic Solar Cells. Advanced Materials, 2012, 24, 2196-2201.	11.1	71
84	Optimization of the Bulk Heterojunction Composition for Enhanced Photovoltaic Properties: Correlation between the Molecular Weight of the Semiconducting Polymer and Device Performance. Journal of Physical Chemistry B, 2011, 115, 12717-12727.	1.2	55
85	Hexagonal-to-Cubic Phase Transformation in Composite Thin Films Induced by FePt Nanoparticles Located at PS/PEO Interfaces. Langmuir, 2011, 27, 14481-14488.	1.6	25
86	Mechanistic study of Atom Transfer Radical Polymerization in the Presence of an Inimer: Toward Highly Branched Controlled Macromolecular Architectures through One-Pot Reaction. Macromolecules, 2011, 44, 7124-7131.	2.2	27
87	Synthesis and Thin Film Phase Behaviour of Functional Rod oil Block Copolymers Based on Poly(<i>para</i> â€phenylenevinylene) and Poly(lactic acid). Macromolecular Rapid Communications, 2011, 32, 813-819.	2.0	11
88	Synthesis of Branched Polymers under Continuousâ€Flow Microprocess: An Improvement of the Control of Macromolecular Architectures. Macromolecular Rapid Communications, 2011, 32, 1820-1825.	2.0	20
89	Micromixer-assisted polymerization processes. Chemical Engineering Science, 2011, 66, 1449-1462.	1.9	62
90	A New Supramolecular Route for Using Rod oil Block Copolymers in Photovoltaic Applications. Advanced Materials, 2010, 22, 763-768.	11.1	159

#	Article	IF	CITATIONS
91	Electronic Properties and Photovoltaic Performances of a Series of Oligothiophene Copolymers Incorporating Both Thieno[3,2â€ <i>b</i>]thiophene and 2,1,3â€Benzothiadiazole Moieties. Macromolecular Rapid Communications, 2010, 31, 651-656.	2.0	35
92	Chemically amplified photoresists for 193â€nm photolithography: Effect of molecular structure and photonic parameters on photopatterning. Journal of Polymer Science Part A, 2010, 48, 1271-1277.	2.5	14
93	Temperature-Dependent Structure of α-CD/PEO-Based Polyrotaxanes in Concentrated Solution in DMSO: Kinetics and Multiblock Copolymer Behavior. Macromolecules, 2010, 43, 1915-1921.	2.2	24
94	Impact of molecular structure of polymer in 193 nm resist performance. Microelectronic Engineering, 2009, 86, 796-799.	1.1	5
95	A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances. Journal of Materials Chemistry, 2009, 19, 4946.	6.7	61
96	Formation and Self-Organization Kinetics of α-CD/PEO-Based Pseudo-Polyrotaxanes in Water. A Specific Behavior at 30 °C. Langmuir, 2009, 25, 8723-8734.	1.6	47
97	Co-axial capillaries microfluidic device for synthesizing size- and morphology-controlled polymer core-polymer shell particles. Lab on A Chip, 2009, 9, 3007.	3.1	74
98	Design of a Linear Poly(3â€hexylthiophene)/Fullereneâ€Based Donorâ€Acceptor Rod oil Block Copolymer. Macromolecular Rapid Communications, 2008, 29, 885-891.	2.0	108
99	Synthesis of poly(paraphenylene vinylene)—polystyreneâ€based rodâ€coil block copolymer by atom transfer radical polymerization: Toward a selfâ€organized lamellar semiconducting material. Journal of Applied Polymer Science, 2008, 110, 3664-3670.	1.3	25
100	Multiblock copolymer behaviour of α-CD/PEO-based polyrotaxanes: towards nano-cylinder self-organization of α-CDs. Soft Matter, 2008, 4, 1855.	1.2	39
101	pH-Switchable supramolecular "sliding―gels based on polyrotaxanes of polyethyleneimine-block-poly(ethylene oxide)-block-polyethyleneimine block copolymer and α-cyclodextrin: synthesis and swelling behaviour. Soft Matter, 2008, 4, 1165.	1.2	22
102	Influence of micromixer characteristics on polydispersity index of block copolymers synthesized in continuous flow microreactors. Lab on A Chip, 2008, 8, 1682.	3.1	50
103	Self-Assembling of Novel Fullerene-Grafted Donor–Acceptor Rodâ ''Coil Block Copolymers. Macromolecules, 2008, 41, 2701-2710.	2.2	113
104	Self-Assembly of Rod-Coil Block Copolymers for Photovoltaic Applications. Macromolecular Symposia, 2008, 268, 28-32.	0.4	16
105	Weakly Segregated Smectic C Lamellar Clusters in Blends of Rods and Rodâ^'Coil Block Copolymers. Macromolecules, 2007, 40, 3277-3286.	2.2	56
106	Topological Polymer Networks with Sliding Cross-Link Points:  The "Sliding Gels― Relationship between Their Molecular Structure and the Viscoelastic as Well as the Swelling Properties. Macromolecules, 2007, 40, 535-543.	2.2	107
107	A Predictive Approach of the Influence of the Operating Parameters on the Size of Polymer Particles Synthesized in a Simplified Microfluidic System. Langmuir, 2007, 23, 7745-7750.	1.6	93
108	Novel Brush-Type Copolymers Bearing Thiophene Backbone and Side Chain Quinoline Blocks. Synthesis and Their Use as a Compatibilizer in Thiopheneâ^'Quinoline Polymer Blends. Macromolecules, 2007, 40, 921-927.	2.2	64

#	Article	IF	CITATIONS
109	Self-Assembly of Poly(diethylhexyloxy- <i>p</i> -phenylenevinylene)- <i>b</i> - poly(4-vinylpyridine) Rodâ^'Coil Block Copolymer Systems. Macromolecules, 2007, 40, 6990-6997.	2.2	111
110	High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor: Towards a better control of the polymerization reaction. Chemical Engineering Science, 2007, 62, 5245-5250.	1.9	71
111	Continuous Online Rapid Size Exclusion Chromatography Monitoring of Polymerizations ―CORSEMP. Macromolecular Reaction Engineering, 2007, 1, 547-552.	0.9	25
112	Free radical polymerization in multilaminated microreactors: 2D and 3D multiphysics CFD modeling. Microfluidics and Nanofluidics, 2007, 3, 451-461.	1.0	33
113	Design and Synthesis of a Low Band Gap Conjugated Macroinitiator:Â Toward Rodâ^'Coil Donorâ^'Acceptor Block Copolymers. Macromolecules, 2006, 39, 4289-4297.	2.2	87
114	Investigating 248 and 193nm resist degradation during reactive ion oxide etching. Microelectronic Engineering, 2006, 83, 1098-1102.	1.1	12
115	Impact of Structure and Morphology on Charge Transport in Semiconducting Oligomeric Thin-Film Devices. ChemPhysChem, 2005, 6, 2376-2382.	1.0	4
116	From high molecular weight precursor polyrotaxanes to supramolecular sliding networks. The â€~sliding gels'. Polymer, 2005, 46, 8494-8501.	1.8	85
117	Synthesis and characterization of high molecular weight polyrotaxanes: towards the control over a wide range of threaded α-cyclodextrins. Soft Matter, 2005, 1, 378.	1.2	84
118	Numerical simulation of polymerization in interdigital multilamination micromixers. Lab on A Chip, 2005, 5, 966.	3.1	55
119	Donorâ^ Acceptor Diblock Copolymers Based on PPV and C60:Â Synthesis, Thermal Properties, and Morphology. Macromolecules, 2004, 37, 3673-3684.	2.2	124
120	A New Iterative Approach for the Synthesis of Oligo(phenyleneethynediyl) Derivatives and Its Application for the Preparation of Fullerene?Oligo(phenyleneethynediyl) Conjugates as Active Photovoltaic Materials. Helvetica Chimica Acta, 2004, 87, 2948-2966.	1.0	41
121	EPR study of positive holes on phenylene vinylene chains: from dimer to polymer. Chemical Physics Letters, 2004, 389, 108-112.	1.2	12
122	Synthesis of Insulated Single-Chain Semiconducting Polymers Based on Polythiophene, Polyfluorene, and β-Cyclodextrin. Chemistry of Materials, 2004, 16, 4383-4385.	3.2	84
123	Charge transport, injection, and photovoltaic phenomena in oligo(phenylenevinylene) based diodes. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2665-2673.	2.4	12
124	Mechanically Linked Polyrotaxanes:Â A Stepwise Approach. Macromolecules, 2003, 36, 7004-7013.	2.2	26
125	Experimental and modeling analysis of highly oriented octithiophene thin films. Synthetic Metals, 2003, 139, 115-122.	2.1	9
126	Organic donor/acceptor photovoltaics: The role of C60/metal interfaces. Applied Physics Letters, 2003, 82, 3101-3103.	1.5	24

#	Article	IF	CITATIONS
127	Semiconducting Block Copolymers for Self-Assembled Photovoltaic Devices. MRS Bulletin, 2002, 27, 456-460.	1.7	45
128	Synthesis of a Diblock Copolymer with Pendent Luminescent and Charge Transport Units through Nitroxide-Mediated Free Radical Polymerization. Macromolecules, 2002, 35, 1543-1548.	2.2	26
129	Amphiphilic, Regioregular Polythiophenes. Macromolecules, 2002, 35, 6883-6892.	2.2	23
130	Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moietyElectronic supplementary information (ESI) available: synthetic procedures and full characterization of all new compounds. See http://www.rsc.org/suppdata/jm/b2/b200432a/. Journal of Materials Chemistry, 2002, 12, 2077-2087.	6.7	91
131	Photovoltaic Devices from Fullerene-Oligophenyleneethynylene Conjugates. ChemPhysChem, 2002, 3, 124-127.	1.0	53
132	Antiferromagnetic Ordering in a Helical Triblock Copolymer Mesostructure. Macromolecules, 2001, 34, 7917-7919.	2.2	27
133	Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer, 2001, 42, 9097-9109.	1.8	245
134	Synthesis of a Conjugated Macromolecular Initiator for Nitroxide-Mediated Free Radical Polymerization The financial support of the EC (TMR scholarship for U.S.) and the Dutch Research Foundation, Physics Division (NWO-FOM) is gratefully acknowledged. G. Alberda van Ekenstein is acknowledged for his contribution to the thermal analysis Angewandte Chemie - International Edition, 2001, 40, 428-430	7.2	1
135	Synthesis and electronic properties of donor-linked fullerenes. Carbon, 2000, 38, 1587-1598.	5.4	47
136	Covalent bond force profile and cleavage in a single polymer chain. Journal of Chemical Physics, 2000, 113, 2497-2503.	1.2	53
137	Measuring the size of excitons on isolated phenylene-vinylene chains: From dimers to polymers. Physical Review B, 2000, 62, 1489-1491.	1.1	41
138	Fullereneâ^'Oligophenylenevinylene Hybrids:  Synthesis, Electronic Properties, and Incorporation in Photovoltaic Devices. Journal of the American Chemical Society, 2000, 122, 7467-7479.	6.6	345
139	Pulse Radiolysisâ ``Optical Absorption Studies on the Triplet States of p-Phenylenevinylene Oligomers in Solution. Journal of Physical Chemistry B, 2000, 104, 8366-8371.	1.2	46
140	A Comparative Experimental and Theoretical Study between Heteroarm Star and Diblock Copolymers in the Microphase Separated State. Macromolecules, 2000, 33, 6330-6339.	2.2	47
141	Semiconducting Diblock Copolymers Synthesized by Means of Controlled Radical Polymerization Techniques. Journal of the American Chemical Society, 2000, 122, 5464-5472.	6.6	298
142	Nanotribological Properties of Unsymmetricaln-Dialkyl Sulfide Monolayers on Gold:Â Effect of Chain Length on Adhesion, Friction, and Imaging. Langmuir, 2000, 16, 3249-3256.	1.6	63
143	Effect of solid-state structure on optical properties of conjugated organic materials. Synthetic Metals, 1999, 102, 1443-1446.	2.1	14
144	A Model Oligomer Approach to Light-Emitting Semiconducting Polymers. Accounts of Chemical Research, 1999, 32, 257-265.	7.6	104

Georges Hadziioannou

#	Article	IF	CITATIONS
145	Molecular Packing in Unsubstituted Semiconducting Phenylenevinylene Oligomer and Polymer. Journal of the American Chemical Society, 1999, 121, 5910-5918.	6.6	123
146	Chemical Contrast on a Microphase-Separated Block Copolymer Surface Observed by Scanning Force Microscopy. Advanced Materials, 1998, 10, 452-456.	11.1	20
147	A different approach to the world of materials at the University of Groningen. Materials Today, 1998, 1, 34-36.	8.3	Ο
148	A Novel Polyaryl Ether Based Photorefractive Composite. Chemistry of Materials, 1998, 10, 3951-3957.	3.2	8
149	Structural Characterization of the Hydrophobin SC3, as a Monomer and after Self-Assembly at Hydrophobic/Hydrophilic Interfaces. Biophysical Journal, 1998, 74, 2059-2068.	0.2	168
150	Stimulated emission from vacuum-deposited thin films of a substituted oligo(p-phenylene vinylene). Applied Physics Letters, 1998, 73, 708-710.	1.5	33
151	Photonic polymers for the devices of the 21 st century. Macromolecular Symposia, 1997, 121, 27-34.	0.4	2
152	Novel Bifunctional Molecule for Photorefractive Materials. Chemistry of Materials, 1997, 9, 1407-1413.	3.2	25
153	Scanning Force Microscopy with Chemical Specificity:  An Extensive Study of Chemically Specific Tipâ~'Surface Interactions and the Chemical Imaging of Surface Functional Groups. Langmuir, 1997, 13, 4357-4368.	1.6	259
154	Surface Chemical Reactions Probed with Scanning Force Microscopy. Langmuir, 1997, 13, 4939-4942.	1.6	27
155	Adsorption Kinetics of an Asymmetric Diblock Copolymer:Â A Surface Forces Apparatus Study. Langmuir, 1997, 13, 1884-1886.	1.6	15
156	Model compounds for light-emitting PPV's: Optical and structural data of substituted oligomers. Synthetic Metals, 1997, 84, 637-638.	2.1	31
157	Efficient blue LEDs from a partially conjugated Si-containing PPV copolymer in a double-layer configuration. Advanced Materials, 1997, 9, 127-131.	11.1	75
158	Highly oriented thin films of a substituted oligo(para-phenylenevinylene) on friction- transferred PTFE substrates. Advanced Materials, 1997, 9, 331-334.	11.1	39
159	Poly(phenylenevinylene)-type conjugated alternating copolymers: Synthesis and optical properties in solution. Macromolecular Chemistry and Physics, 1997, 198, 2211-2235.	1.1	35
160	Nanorheology of Adsorbed Diblock Copolymer Layers. Journal De Physique II, 1997, 7, 271-283.	0.9	15
161	An Atomic Force Microscopy Study on the Transition from Mushrooms to Octopus Surface "Micelles― by Changing the Solvent Quality. Langmuir, 1996, 12, 3221-3224.	1.6	46
162	Synthesis of a functional polymer with pendent luminescent phenylenevinylene units through nitroxide-mediated free-radical polymerization. Macromolecular Rapid Communications, 1996, 17, 693-702.	2.0	16

#	Article	IF	CITATIONS
163	A novel thermoset polymer optical fiber. Advanced Materials, 1996, 8, 45-48.	11.1	22
164	Two novel thermotropic liquid crystalline substituted oligo(p-phenylene-vinylene)s: Single crystal X-ray determination of an all-trans oligomeric PPV. Advanced Materials, 1996, 8, 212-214.	11.1	91
165	Blue superradiance from neat semiconducting alternating copolymer films. Advanced Materials, 1996, 8, 935-937.	11.1	144
166	Direct morphological study of metal/polymer interfaces by scanning force microscopy. Surface and Interface Analysis, 1995, 23, 426-427.	0.8	8
167	Synthesis and Characterization of a New Efficient Blue-Light-Emitting Copolymer. Macromolecules, 1995, 28, 4525-4529.	2.2	99
168	Tuning of the Luminescence in Multiblock Alternating Copolymers. 1. Synthesis and Spectroscopy of Poly[(silanylene)thiophene]s. Macromolecules, 1995, 28, 8102-8116.	2.2	100
169	Conformational Transitions of End-Adsorbed Copolymer Chains at the Liquid/Solid Interface. Macromolecules, 1995, 28, 5512-5517.	2.2	31
170	Random multiblock copolymer-homopolymer blends: Effect of sequence distribution and intramolecular repulsion. Physical Review E, 1994, 50, 3808-3813.	0.8	11
171	Tuning of photo- and electroluminescence in alkylated polythiophenes with well-defined regioregularity. Advanced Materials, 1994, 6, 132-135.	11.1	163
172	Tuning of the photo- and electroluminescence in multi-block copolymers of poly[(silanylene)thiophene]s via exciton confinement. Advanced Materials, 1993, 5, 721-723.	11.1	158
173	Synthesis and crystal structure of para-substituted diphenylsilanes of interest for nonlinear optics: Sulfonyl acceptor groups. Journal of Organometallic Chemistry, 1993, 454, 25-34.	0.8	26
174	On the morphology of a lamellar triblock copolymer film. Journal De Physique II, 1993, 3, 139-146.	0.9	17
175	Critical molecular weight for block copolymer reinforcement of interfaces in a two-phase polymer blend. Macromolecules, 1991, 24, 1846-1853.	2.2	173
176	Segregation of block copolymers to interfaces between immiscible homopolymers. Macromolecules, 1990, 23, 4780-4787.	2.2	217
177	A simple model for forces between surfaces bearing grafted polymers applied to data on adsorbed block copolymers. Colloids and Surfaces, 1988, 31, 157-179.	0.9	83
178	Diffusion of macromolecular stars in linear, microgel, and network matrices. Macromolecules, 1988, 21, 2578-2580.	2.2	21
179	Interaction between plates in a polymer melt. Journal of Chemical Physics, 1988, 89, 4374-4380.	1.2	97
180	Forces between surfaces of block copolymers adsorbed on mica. Journal of the American Chemical Society, 1986, 108, 2869-2876.	6.6	318

#	Article	IF	CITATIONS
181	Generalization of the Zimm equation for scattering from concentrated solutions. Macromolecules, 1984, 17, 1059-1062.	2.2	23
182	Neutron scattering studies of dimensions and of interactions between components in polystyrene/poly(vinyl methyl ether) and poly(vinylidene fluoride)/poly(methyl methacrylate) amorphous blends. Macromolecules, 1984, 17, 567-573.	2.2	78
183	Small-angle neutron scattering studies on amorphous polystyrene oriented by solid-state coextrusion. Macromolecules, 1982, 15, 880-882.	2.2	58
184	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1980, 1, 693-696.	1.1	3