Siew Pheng Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925960/publications.pdf

Version: 2024-02-01

74 papers

5,608 citations

43 h-index 79644 73 g-index

76 all docs 76 docs citations

76 times ranked 4469 citing authors

#	Article	IF	Citations
1	Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nature Structural and Molecular Biology, 2006, 13, 372-373.	3.6	478
2	Ten years of dengue drug discovery: Progress and prospects. Antiviral Research, 2013, 100, 500-519.	1.9	310
3	Strategies for development of dengue virus inhibitors. Antiviral Research, 2010, 85, 450-462.	1.9	240
4	Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO Journal, 2008, 27, 3209-3219.	3.5	221
5	Functional Profiling of Recombinant NS3 Proteases from All Four Serotypes of Dengue Virus Using Tetrapeptide and Octapeptide Substrate Libraries. Journal of Biological Chemistry, 2005, 280, 28766-28774.	1.6	219
6	Towards the design of antiviral inhibitors against flaviviruses: The case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Research, 2008, 80, 94-101.	1.9	184
7	A Crystal Structure of the Dengue Virus NS5 Protein Reveals a Novel Inter-domain Interface Essential for Protein Flexibility and Virus Replication. PLoS Pathogens, 2015, 11, e1004682.	2.1	180
8	The dengue virus NS5 protein as a target for drug discovery. Antiviral Research, 2015, 119, 57-67.	1.9	168
9	Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 91-94.	1.0	154
10	Peptide inhibitors of dengue virus NS3 protease. Part 1: Warhead. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 36-39.	1.0	152
11	Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase. Journal of Biological Chemistry, 2011, 286, 6233-6240.	1.6	147
12	Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 40-43.	1.0	142
13	2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase. PLoS Pathogens, 2012, 8, e1002642.	2.1	125
14	Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLoS Pathogens, 2016, 12, e1005737.	2.1	124
15	Cellular RNA Helicase p68 Relocalization and Interaction with the Hepatitis C Virus (HCV) NS5B Protein and the Potential Role of p68 in HCV RNA Replication. Journal of Virology, 2004, 78, 5288-5298.	1.5	111
16	Flavivirus RNA methylation. Journal of General Virology, 2014, 95, 763-778.	1.3	107
17	A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of dengue virus protease. Analytical Biochemistry, 2009, 395, 195-204.	1.1	92
18	Biochemical and genetic characterization of dengue virus methyltransferase. Virology, 2010, 405, 568-578.	1.1	91

#	Article	IF	Citations
19	The Human Immunodeficiency Virus Type 1 Tat Protein Up-Regulates the Promoter Activity of the Beta-Chemokine Monocyte Chemoattractant Protein 1 in the Human Astrocytoma Cell Line U-87 MG: Role of SP-1, AP-1, and NF-ΰB Consensus Sites. Journal of Virology, 2000, 74, 1632-1640.	1.5	90
20	Conformational Flexibility of the Dengue Virus RNA-Dependent RNA Polymerase Revealed by a Complex with an Inhibitor. Journal of Virology, 2013, 87, 5291-5295.	1.5	89
21	Molecular basis for specific viral RNA recognition and 2′-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14834-14839.	3.3	89
22	Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. Antiviral Research, 2007, 76, 222-231.	1.9	86
23	Peptide Inhibitors of West Nile NS3 Protease:  SAR Study of Tetrapeptide Aldehyde Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 6585-6590.	2.9	79
24	Flaviviral Protease Inhibitors Identified by Fragment-Based Library Docking into a Structure Generated by Molecular Dynamics. Journal of Medicinal Chemistry, 2009, 52, 4860-4868.	2.9	77
25	Novel Inhibitors of Dengue Virus Methyltransferase: Discovery by in Vitro-Driven Virtual Screening on a Desktop Computer Grid. Journal of Medicinal Chemistry, 2010, 53, 1483-1495.	2.9	76
26	Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization. Journal of Biological Chemistry, 2013, 288, 22621-22635.	1.6	76
27	NMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease. PLoS Neglected Tropical Diseases, 2009, 3, e561.	1.3	75
28	A Crystal Structure of the Dengue Virus Non-structural Protein 5 (NS5) Polymerase Delineates Interdomain Amino Acid Residues That Enhance Its Thermostability and de Novo Initiation Activities. Journal of Biological Chemistry, 2013, 288, 31105-31114.	1.6	74
29	Discovery of a Non-Peptidic Inhibitor of West Nile Virus NS3 Protease by High-Throughput Docking. PLoS Neglected Tropical Diseases, 2009, 3, e356.	1.3	71
30	Dengue drug discovery: Progress, challenges and outlook. Antiviral Research, 2019, 163, 156-178.	1.9	71
31	Discovery of Potent Non-Nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from a Fragment Hit Using Structure-Based Drug Design. Journal of Medicinal Chemistry, 2016, 59, 3935-3952.	2.9	70
32	Cell-Free Transcription/Translation from PCR-Amplified DNA for High-Throughput NMR Studies. Angewandte Chemie - International Edition, 2007, 46, 3356-3358.	7.2	69
33	Mutagenesis of the Dengue Virus Type 2 NS5 Methyltransferase Domain. Journal of Biological Chemistry, 2008, 283, 19410-19421.	1.6	65
34	Activation of Peripheral Blood Mononuclear Cells by Dengue Virus Infection Depotentiates Balapiravir. Journal of Virology, 2014, 88, 1740-1747.	1.5	60
35	Polymerases of hepatitis C viruses and flaviviruses: Structural and mechanistic insights and drug development. Antiviral Research, 2014, 105, 8-16.	1.9	58
36	Expression of a Full-Length Hepatitis C Virus cDNA Up-Regulates the Expression of CC Chemokines MCP-1 and RANTES. Virology, 2002, 303, 253-277.	1.1	56

#	Article	IF	CITATIONS
37	A scintillation proximity assay for dengue virus NS5 2′-O-methyltransferase—kinetic and inhibition analyses. Antiviral Research, 2008, 80, 360-369.	1.9	56
38	Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2′-O methyltransferase activity in dengue virus. Virology, 2010, 402, 52-60.	1.1	55
39	A Conserved Pocket in the Dengue Virus Polymerase Identified through Fragment-based Screening. Journal of Biological Chemistry, 2016, 291, 8541-8548.	1.6	55
40	Structural and Functional Analyses of a Conserved Hydrophobic Pocket of Flavivirus Methyltransferase. Journal of Biological Chemistry, 2010, 285, 32586-32595.	1.6	52
41	The Hepatitis C Virus Core Protein Interacts with NS5A and Activates Its Caspase-Mediated Proteolytic Cleavage. Virology, 2001, 290, 224-236.	1.1	51
42	The \hat{I}^2 7 integrin gene (ltgb-7) promoter is responsive to TGF- \hat{I}^2 1: defining control regions. Immunogenetics, 1998, 48, 184-195.	1.2	50
43	Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target. Bioscience Reports, 2011, 31, 399-409.	1.1	46
44	The Dengue Virus Replication Complex: From RNA Replication to Protein-Protein Interactions to Evasion of Innate Immunity. Advances in Experimental Medicine and Biology, 2018, 1062, 115-129.	0.8	45
45	NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Science Translational Medicine, 2021, 13, .	5.8	43
46	West Nile Virus Drug Discovery. Viruses, 2013, 5, 2977-3006.	1.5	42
47	Flexibility of NS5 Methyltransferase-Polymerase Linker Region Is Essential for Dengue Virus Replication. Journal of Virology, 2015, 89, 10717-10721.	1.5	41
48	Structural and functional analysis of a promoter of the human granulin/epithelin gene. Biochemical Journal, 1996, 319, 441-447.	1.7	37
49	Mutations That Affect Dimer Formation and Helicase Activity of the Hepatitis C Virus Helicase. Journal of Virology, 2001, 75, 205-214.	1.5	35
50	NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B–NS3 protease. FEBS Journal, 2009, 276, 4244-4255.	2.2	35
51	Finding New Medicines for Flaviviral Targets. Novartis Foundation Symposium, 2008, , 102-119.	1.2	34
52	Crystal Structure of the Dengue Virus Methyltransferase Bound to a 5′-Capped Octameric RNA. PLoS ONE, 2010, 5, e12836.	1.1	34
53	NS5 from Dengue Virus Serotype 2 Can Adopt a Conformation Analogous to That of Its Zika Virus and Japanese Encephalitis Virus Homologues. Journal of Virology, 2019, 94, .	1.5	31
54	Yellow fever virus NS3 protease: peptide-inhibition studies. Journal of General Virology, 2007, 88, 2223-2227.	1.3	29

#	Article	IF	CITATIONS
55	CD81 engineered with endocytotic signals mediates HCV cell entry: implications for receptor usage by HCV in vivo. Virology, 2003, 308, 250-269.	1.1	21
56	Identifying Initiation and Elongation Inhibitors of Dengue Virus RNA Polymerase in a High-Throughput Lead-Finding Campaign. Journal of Biomolecular Screening, 2015, 20, 153-163.	2.6	21
57	Finding new medicines for flaviviral targets. Novartis Foundation Symposium, 2006, 277, 102-14; discussion 114-9, 251-3.	1.2	21
58	Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2324-2327.	1.0	19
59	Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 157-162.	0.7	18
60	Antiviral Nucleotide Incorporation by Recombinant Human Mitochondrial RNA Polymerase Is Predictive of Increased <i>In Vivo</i> Mitochondrial Toxicity Risk. Antimicrobial Agents and Chemotherapy, 2016, 60, 7077-7085.	1.4	18
61	A Novel Extracellular Domain Variant of the Human Integrin $\hat{l}\pm7$ Subunit Generated by Alternative Intron Splicing. Biochemical and Biophysical Research Communications, 1998, 243, 317-325.	1.0	17
62	Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine, 2004, 23, 546-554.	1.7	17
63	Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies. Journal of Virology, 2020, 94, .	1.5	17
64	Inducible System in Human Hepatoma Cell Lines for Hepatitis C Virus Production. Virology, 2002, 303, 79-99.	1.1	16
65	Discovery of Potent Non-nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from Fragment Screening and Structure-Guided Design. Advances in Experimental Medicine and Biology, 2018, 1062, 187-198.	0.8	16
66	Stabilization of dengue virus polymerase in de novo initiation assay provides advantages for compound screening. Antiviral Research, 2015, 119, 36-46.	1.9	15
67	Identification and molecular characterisation of the complete genome of a Singapore isolate of hepatitis C virus: sequence comparison with other strains and phylogenetic analysis. Virus Genes, 2001, 23, 89-95.	0.7	12
68	Characterization of a novel IRF-1-deficient mutant cell line. Immunogenetics, 1994, 39, 168-77.	1.2	7
69	Cloning Trap for Signal Peptide Sequences. BioTechniques, 2000, 28, 124-130.	0.8	6
70	An anti-HIV-1 gp120 antibody expressed as an endocytotic transmembrane protein mediates internalization of HIV-1. Virology, 2003, 315, 80-92.	1.1	6
71	Use of an in vitro Model and Yeast Two-Hybrid System to Investigate the Pathogenesis of Hepatitis C. Intervirology, 2006, 49, 44-50.	1.2	5
72	Detection and Quantification of Flavivirus NS5 Methyl-Transferase Activities. Methods in Molecular Biology, 2013, 1030, 249-268.	0.4	5

#	Article	lF	CITATIONS
73	A Cyclic Phosphoramidate Prodrug of 2′-Deoxy-2′-Fluoro-2′- <i>C</i> -Methylguanosine for the Treatment of Dengue Virus Infection. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	4
74	Editorial: Viral Evasion Mechanisms of the Host Response. Frontiers in Cellular and Infection Microbiology, 2020, 10, 90.	1.8	0