Aldo R Boccaccini

List of Publications by Citations

Source: https://exaly.com/author-pdf/5925838/aldo-r-boccaccini-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,235 papers

53,073 citations

101 h-index 181 g-index

1,309 ext. papers

60,587 ext. citations

5.3 avg, IF

8.29 L-index

#	Paper	IF	Citations
1235	Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. <i>Biomaterials</i> , 2006 , 27, 3413-31	15.6	2998
1234	A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. <i>Biomaterials</i> , 2011 , 32, 2757-74	15.6	1732
1233	45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. <i>Biomaterials</i> , 2006 , 27, 2414	- 25 .6	971
1232	Biomedical coatings on magnesium alloys - a review. <i>Acta Biomaterialia</i> , 2012 , 8, 2442-55	10.8	876
1231	Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. <i>Materials</i> , 2010 , 3, 3867-3910	3.5	669
1230	Electrophoretic deposition of carbon nanotubes. <i>Carbon</i> , 2006 , 44, 3149-3160	10.4	544
1229	Electrophoretic deposition: From traditional ceramics to nanotechnology. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 1353-1367	6	533
1228	Electrophoretic deposition of biomaterials. <i>Journal of the Royal Society Interface</i> , 2010 , 7 Suppl 5, S581-	641.33	463
1227	Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. <i>Tissue Engineering - Part B: Reviews</i> , 2010 , 16, 199-207	7.9	455
1226	Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Current Opinion in Solid State and Materials Science, 2002 , 6, 251-260	12	417
1225	Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 2010 , 7, 209-27	4.1	395
1224	Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. <i>Biomaterials</i> , 2008 , 29, 47-57	15.6	385
1223	Polymer/bioactive glass nanocomposites for biomedical applications: A review. <i>Composites Science and Technology</i> , 2010 , 70, 1764-1776	8.6	384
1222	Thermal plasma technology for the treatment of wastes: a critical review. <i>Journal of Hazardous Materials</i> , 2009 , 161, 614-26	12.8	342
1221	Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. <i>Acta Biomaterialia</i> , 2015 , 13, 1-15	10.8	332
1220	Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. <i>Progress in Polymer Science</i> , 2012 , 37, 1051-1078	29.6	324
1219	Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2011 , 7, 22-39	6	324

1218	Glass-ceramics: Their production from wastes A Review. <i>Journal of Materials Science</i> , 2006 , 41, 733-761	4.3	324	
1217	Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. <i>Biomaterials</i> , 2002 , 23, 3871-8	15.6	314	
1216	Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. <i>Biomacromolecules</i> , 2006 , 7, 2249-58	6.9	309	
1215	Ceramic matrix composites containing carbon nanotubes. <i>Journal of Materials Science</i> , 2009 , 44, 1934-1	9.5.3	297	
1214	Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. <i>Biomaterials</i> , 2014 , 35, 9068-86	15.6	289	
1213	Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. <i>Biomaterials</i> , 2004 , 25, 4185-94	15.6	287	
1212	Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. <i>Biomaterials</i> , 2008 , 29, 1750-61	15.6	280	
1211	Biomaterials in cardiac tissue engineering: Ten years of research survey. <i>Materials Science and Engineering Reports</i> , 2008 , 59, 1-37	30.9	275	
12 10	Polymer-bioceramic composites for tissue engineering scaffolds. <i>Journal of Materials Science</i> , 2008 , 43, 4433-4442	4.3	266	
1209	Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 401-1	9 ^{4.1}	265	
1208	Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. <i>Biomaterials</i> , 2004 , 25, 1319-29	15.6	258	
1207	Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. <i>Biomaterials</i> , 2004 , 25, 5857-66	15.6	255	
1206	Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1470-1482	7.3	250	
1205	Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. <i>Acta Biomaterialia</i> , 2017 , 62, 1-28	10.8	250	
1204	Bioresorbable and bioactive polymer/Bioglass composites with tailored pore structure for tissue engineering applications. <i>Composites Science and Technology</i> , 2003 , 63, 2417-2429	8.6	248	
1203	PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. <i>Biomaterials</i> , 2004 , 25, 3013-21	15.6	246	
1202	Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. <i>Materials Science and Engineering Reports</i> , 2011 , 72, 29-47	30.9	242	
1201	Bioactive composite materials for tissue engineering scaffolds. <i>Expert Review of Medical Devices</i> , 2005 , 2, 303-17	3.5	228	

1200	In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. <i>Tissue Engineering</i> , 2004 , 10, 1518-25		223
1199	Osteochondral tissue engineering: scaffolds, stem cells and applications. <i>Journal of Cellular and Molecular Medicine</i> , 2012 , 16, 2247-70	5.6	211
1198	Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. <i>Journal of the Royal Society Interface</i> , 2015 , 12, 20150254	4.1	204
1197	Structural analysis of bioactive glasses. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 173-183	3.9	204
1196	Antibacterial biohybrid nanofibers for wound dressings. <i>Acta Biomaterialia</i> , 2020 , 107, 25-49	10.8	203
1195	A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 115	4.5	203
1194	Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. <i>Expert Review of Medical Devices</i> , 2006 , 3, 853-68	3.5	199
1193	Applications of graphene electrophoretic deposition. A review. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 1502-15	3.4	198
1192	Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glass-ceramics. <i>Faraday Discussions</i> , 2007 , 136, 27-44; discussion 107-23	3.6	196
1191	Myocardial tissue engineering: a review. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2007 , 1, 327-42	4.4	193
1190	Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. <i>Acta Biomaterialia</i> , 2005 , 1, 643-52	10.8	191
1189	Sintering and crystallisation of 45S5 Bioglass powder. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 3299-3306	6	183
1188	Bioactive glasses: Special applications outside the skeletal system. <i>Journal of Non-Crystalline Solids</i> , 2016 , 432, 15-30	3.9	178
1187	A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. <i>Journal of Materials Science</i> , 2016 , 51, 271-310	4.3	173
1186	In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2003 , 67, 1401-11	5.4	168
1185	Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review. <i>Biomacromolecules</i> , 2018 , 19, 3-21	6.9	167
1184	Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. <i>Antonie Van Leeuwenhoek</i> , 2007 , 91, 1-17	2.1	164
1183	Sol-gel processing of bioactive glass nanoparticles: A review. <i>Advances in Colloid and Interface Science</i> , 2017 , 249, 363-373	14.3	162

(2010-2013)

1182	Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. <i>Acta Biomaterialia</i> , 2013 , 9, 7469-79	10.8	162	
1181	The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. <i>Biomaterials</i> , 2009 , 30, 499-507	15.6	161	
1180	Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 3270-3277	3.8	159	
1179	Electrophoretic deposition of graphene-related materials: A review of the fundamentals. <i>Progress in Materials Science</i> , 2016 , 82, 83-117	42.2	158	
1178	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. <i>Biomaterials</i> , 2011 , 32, 8915-26	15.6	157	
1177	Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications. <i>Acta Biomaterialia</i> , 2014 , 10, 2434-45	10.8	156	
1176	The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. <i>Biomaterials</i> , 2011 , 32, 4096-108	15.6	154	
1175	Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. <i>Progress in Materials Science</i> , 2019 , 103, 69-108	42.2	154	
1174	Fly ash-based geopolymers containing added silicate waste. A review. <i>Ceramics International</i> , 2017 , 43, 14545-14551	5.1	152	
1173	Porous magnesium-based scaffolds for tissue engineering. <i>Materials Science and Engineering C</i> , 2017 , 71, 1253-1266	8.3	145	
1172	An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. <i>Biomaterials</i> , 2010 , 31, 3885-93	15.6	145	
1171	Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. <i>PLoS ONE</i> , 2014 , 9, e107952	3.7	144	
1170	Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass-filled polylactide foams. <i>Journal of Biomedical Materials Research - Part A</i> , 2003 , 66, 335-46	5.4	142	
1169	Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition (EPD). <i>Journal of the American Ceramic Society</i> , 2005 , 88, 980-982	3.8	142	
1168	Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. <i>Biomaterials</i> , 2010 , 31, 2806-15	15.6	141	
1167	Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. <i>Journal of Biotechnology</i> , 2007 , 132, 251-8	3.7	139	
1166	Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. <i>Tissue Engineering</i> , 2006 , 12, 1687-97		139	
1165	Electrophoretic deposition of carbon nanotubelleramic nanocomposites. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 1115-1129	6	137	

1164	Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. <i>Current Opinion in Solid State and Materials Science</i> , 2014 , 18, 147-167	12	136
1163	Electrophoretic deposition of chitosan/45S5 Bioglass composite coatings for orthopaedic applications. <i>Surface and Coatings Technology</i> , 2011 , 205, 5260-5268	4.4	135
1162	Magnesium-Containing Bioactive Glasses for Biomedical Applications. <i>International Journal of Applied Glass Science</i> , 2012 , 3, 221-253	1.8	134
1161	Poly(D,L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 77, 445-57	5.4	133
1160	Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. <i>Journal of Materials Processing Technology</i> , 2009 , 209, 1853-1860	5.3	132
1159	Lithography-Based Additive Manufacturing of Cellular Ceramic Structures. <i>Advanced Engineering Materials</i> , 2012 , 14, 1052-1058	3.5	128
1158	Myocardial tissue engineering. British Medical Bulletin, 2008, 87, 31-47	5.4	128
1157	Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. <i>Biomaterials Science</i> , 2013 , 1, 254-256	7.4	127
1156	Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds. <i>Biomacromolecules</i> , 2010 , 11, 1470-9	6.9	127
1155	3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. <i>Acta Biomaterialia</i> , 2020 , 101, 1-13	10.8	126
1154	Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 8796-806	9.5	125
1153	Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass coatings on NiTi shape memory alloy wires. <i>Journal of Materials Science</i> , 2006 , 41, 8152-8159	4.3	120
1152	GlassEeramic seal to join Crofer 22 APU alloy to YSZ ceramic in planar SOFCs. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 61-68	6	119
1151	The Electrophoretic Deposition of Inorganic Nanoscaled Materials-A Review <i>Journal of the Ceramic Society of Japan</i> , 2006 , 114, 1-14		116
1150	Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 453-65	4.1	115
1149	Electrophoretic deposition of chitosan. <i>Materials Letters</i> , 2009 , 63, 2253-2256	3.3	115
1148	Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering Scaffolds. <i>Advanced Functional Materials</i> , 2007 , 17, 2815-2822	15.6	115
1147	Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass ^[] composite tubular foam scaffolds for tissue engineering applications. <i>Materials Science and Engineering C</i> 2005, 25, 23-31	8.3	115

1146	Evaluation of an alginate-gelatine crosslinked hydrogel for bioplotting. <i>Biofabrication</i> , 2015 , 7, 025001	10.5	113
1145	Characterisation of carbon nanotube films deposited by electrophoretic deposition. <i>Carbon</i> , 2009 , 47, 58-67	10.4	111
1144	Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. <i>Acta Biomaterialia</i> , 2005 , 1, 553-63	10.8	110
1143	Processing of 45S5 Bioglass by lithography-based additive manufacturing. <i>Materials Letters</i> , 2012 , 74, 81-84	3.3	108
1142	Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. <i>Biomacromolecules</i> , 2006 , 7, 3345-55	6.9	107
1141	Boron-containing bioactive glasses in bone and soft tissue engineering. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 855-869	6	106
1140	Characterization of electrophoretic chitosan coatings on stainless steel. <i>Materials Letters</i> , 2012 , 66, 302	- <u>3.9</u> 4	105
1139	The relevance of biomaterials to the prevention and treatment of osteoporosis. <i>Acta Biomaterialia</i> , 2014 , 10, 1793-805	10.8	103
1138	Fibrous protein-based hydrogels for cell encapsulation. <i>Biomaterials</i> , 2014 , 35, 6727-38	15.6	103
1137	Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. <i>Acta Biomaterialia</i> , 2012 , 8, 792-801	10.8	103
1136	Biodegradable polyurethane composite scaffolds containing Bioglass for bone tissue engineering. <i>Composites Science and Technology</i> , 2010 , 70, 1894-1908	8.6	102
1135	Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds. <i>Composites Science and Technology</i> , 2007 , 67, 1139-1147	8.6	102
1134	Machinability and brittleness of glass-ceramics. <i>Journal of Materials Processing Technology</i> , 1997 , 65, 302-304	5.3	99
1133	Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. <i>Journal of Materials Science: Materials in Medicine</i> , 2012 , 23, 2317-33	4.5	98
1132	Permeability evaluation of 45S5 Bioglass-based scaffolds for bone tissue engineering. <i>Journal of Biomechanics</i> , 2009 , 42, 257-60	2.9	98
1131	Iron and iron-based alloys for temporary cardiovascular applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 138	4.5	97
1130	Titanium dioxide (TiO(2)) nanoparticles filled poly(D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering. <i>Journal of Materials Science: Materials in Medicine</i> , 2007 , 18, 1287-98	4.5	97
1129	Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 84, 1049-60	5.4	97

1128	Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods. <i>Electrochimica Acta</i> , 2012 , 65, 70-89	6.7	95
1127	In vitro reactivity of Cu doped 45S5 Bioglass derived scaffolds for bone tissue engineering. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 5659-5674	7.3	95
1126	Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. Journal of Nanoparticle Research, 2012 , 14, 1	2.3	95
1125	Production of nepheline/quartz ceramics from geopolymer mortars. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 251-258	6	90
1124	Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. <i>Journal of Materials Science: Materials in Medicine</i> , 2002 , 13, 1207-14	4.5	89
1123	Glass matrix composites from coal flyash and waste glass. Waste Management, 1997 , 17, 39-45	8.6	88
1122	Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. <i>Journal of Biotechnology</i> , 2007 , 127, 475-87	3.7	88
1121	Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass particles for tissue engineering applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2003 , 14, 443-50	4.5	88
1120	Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. <i>Biomaterials</i> , 2019 , 197, 405-416	15.6	87
1119	Alginate-based hydrogels with improved adhesive properties for cell encapsulation. <i>International Journal of Biological Macromolecules</i> , 2015 , 78, 72-8	7.9	87
1118	Tackling bioactive glass excessive in vitro bioreactivity: Preconditioning approaches for cell culture tests. <i>Acta Biomaterialia</i> , 2018 , 75, 3-10	10.8	87
1117	Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. <i>Materials Chemistry and Physics</i> , 2007 , 103, 95-100	4.4	87
1116	In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 75, 778-87	5.4	87
1115	Combining collagen and bioactive glasses for bone tissue engineering: a review. <i>Advanced Healthcare Materials</i> , 2015 , 4, 176-94	10.1	86
1114	Aging Time and Temperature Effects on the Structure and Bioactivity of Gel-Derived 45S5 Glass-Ceramics. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 30-38	3.8	86
1113	Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications. <i>Materials Science and Engineering C</i> , 2018 , 83, 99-107	8.3	86
1112	Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013 , 20, 173-83	4.1	85
1111	Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). Journal of Nanoparticle Research, 2008, 10, 99-105	2.3	85

(2005-2001)

1110	Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites: a review. <i>Composites Part A: Applied Science and Manufacturing</i> , 2001 , 32, 997-1006	8.4	85
1109	Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. <i>Tissue Engineering - Part A</i> , 2014 , 20, 2140-50	3.9	84
1108	Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglass -based glass Beramic scaffolds for bone tissue engineering. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 505-514	6	83
1107	Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opinion on Drug Delivery, 2013 , 10, 1353-65	8	83
1106	In vitro attachment of Staphylococcus epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. <i>Journal of Biomaterials Applications</i> , 2004 , 19, 47-57	2.9	83
1105	Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. <i>Acta Biomaterialia</i> , 2019 , 91, 60-71	10.8	81
1104	The role of osteoclasts in bone tissue engineering. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2015 , 9, 1133-49	4.4	81
1103	Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. <i>Environmental Science & Environmental </i>	10.3	81
1102	and Biocompatibility of Alginate Dialdehyde/Gelatin Hydrogels with and without Nanoscaled Bioactive Glass for Bone Tissue Engineering Applications. <i>Materials</i> , 2014 , 7, 1957-1974	3.5	80
1101	Poly-3-hydroxyoctanoate P(3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. <i>Biomacromolecules</i> , 2011 , 12, 2126-36	6.9	80
1100	Preparation of low melting temperature glassDeramics from municipal waste incineration fly ash. <i>Fuel</i> , 2009 , 88, 1275-1280	7.1	80
1099	Fabrication and characterization of bioactive and antibacterial composites for dental applications. <i>Acta Biomaterialia</i> , 2014 , 10, 3723-32	10.8	79
1098	Mullite (Nextell 20) fibre-reinforced mullite matrix composites exhibiting favourable thermomechanical properties. <i>Journal of the European Ceramic Society</i> , 2002 , 22, 2333-2342	6	79
1097	Electrospun Polyhydroxybutyrate/Poly(Laprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 17098-108	9.5	78
1096	Surface functionalization of Bioglass-derived porous scaffolds. <i>Acta Biomaterialia</i> , 2007 , 3, 551-62	10.8	78
1095	Versatile Production of Poly(Epsilon-Caprolactone) Fibers by Electrospinning Using Benign Solvents. <i>Nanomaterials</i> , 2016 , 6,	5.4	78
1094	Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. <i>Materials Science and Engineering C</i> , 2013 , 33, 3677-87	8.3	77
1093	Structural and functional thick ceramic coatings by electrophoretic deposition. <i>Surface and Coatings Technology</i> , 2005 , 191, 303-310	4.4	77

1092	Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. <i>ACS Applied Materials & Discrete Section</i> , 100 (2014), 6, 2865-77	9.5	76
1091	Bioglass -based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. <i>Ceramics International</i> , 2013 , 39, 7517-7522	5.1	76
1090	Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. <i>Acta Biomaterialia</i> , 2010 , 6, 2773-86	10.8	76
1089	Ceramic processing of incinerator bottom ash. Waste Management, 2003, 23, 907-16	8.6	76
1088	Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. <i>Journal of Non-Crystalline Solids</i> , 2004 , 333, 187-193	3.9	76
1087	Advancing bioinks for 3D bioprinting using reactive fillers: A review. <i>Acta Biomaterialia</i> , 2020 , 113, 1-22	10.8	75
1086	Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. <i>International Journal of Nanomedicine</i> , 2014 , 9, 3659-76	7.3	75
1085	A new approach for the Young's modulus-porosity correlation of ceramic materials. <i>Ceramics International</i> , 1997 , 23, 239-245	5.1	75
1084	Glass-ceramics from filter dusts from waste incinerators. <i>Ceramics International</i> , 1995 , 21, 231-235	5.1	75
1083	Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 2240-2254	5.5	75
1082	Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues. <i>Advanced Functional Materials</i> , 2018 , 28, 1803951	15.6	75
1081	Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. <i>Expert Review of Medical Devices</i> , 2015 , 12, 93-111	3.5	74
1080	Multifunctional zinc ion doped sol - gel derived mesoporous bioactive glass nanoparticles for biomedical applications. <i>Bioactive Materials</i> , 2019 , 4, 312-321	16.7	74
1079	Multiple drug delivery hydrogel system for spinal cord injury repair strategies. <i>Journal of Controlled Release</i> , 2012 , 159, 271-80	11.7	74
1078	Nanoscale Bioactive Glasses in Medical Applications. <i>International Journal of Applied Glass Science</i> , 2013 , 4, 136-148	1.8	74
1077	Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. <i>Journal of Non-Crystalline Solids</i> , 2013 , 365, 63-74	3.9	74
1076	Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 80, 837-51	5.4	74
1075	Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. <i>Journal of Cleaner Production</i> , 2015 , 89, 224-230	10.3	73

(2009-2018)

1074	Fabrication and characterization of copper(II)-chitosan complexes as antibiotic-free antibacterial biomaterial. <i>Carbohydrate Polymers</i> , 2018 , 179, 370-378	10.3	73	
1073	Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. <i>Bioactive Materials</i> , 2018 , 3, 55-63	16.7	72	
1072	Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. <i>Tissue Engineering - Part C: Methods</i> , 2013 , 19, 479-86	2.9	72	
1071	Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 12231-42	6.3	72	
1070	Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications. <i>Acta Biomaterialia</i> , 2010 , 6, 735-42	10.8	72	
1069	Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages. <i>Atherosclerosis</i> , 2008 , 196, 98-105	3.1	72	
1068	Air pollution control residues from waste incineration: current UK situation and assessment of alternative technologies. <i>Waste Management</i> , 2008 , 28, 2279-92	8.6	72	
1067	The electrophoretic deposition of Bioglass particles on stainless steel and Nitinol substrates. <i>Surface and Coatings Technology</i> , 2006 , 200, 4835-4845	4.4	72	
1066	Mechanical properties of biodegradable polymer sutures coated with bioactive glass. <i>Journal of Materials Science: Materials in Medicine</i> , 2002 , 13, 843-8	4.5	72	
1065	A Composites Approach to Tissue Engineering. Ceramic Engineering and Science Proceedings,805-816	0.1	72	
1064	Graphene Oxide/Polymer-Based Biomaterials. Advanced Engineering Materials, 2017, 19, 1700627	3.5	71	
1063	Surface functionalization of bioactive glasses. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 90, 981-92	5.4	71	
1062	Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation. <i>Journal of Materials Science</i> , 2003 , 38, 1597-1604	4.3	71	
1061	Novel Biodegradable Polymer/Bioactive Glass Composites for Tissue Engineering Applications. <i>Advanced Engineering Materials</i> , 2002 , 4, 105	3.5	70	
1060	Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 73, 73-9	5.4	70	
1059	Protein adsorption on magnesium and its alloys: A review. <i>Applied Surface Science</i> , 2019 , 464, 212-219	6.7	70	
1058	Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. <i>Acta Biomaterialia</i> , 2014 , 10, 3795-810	10.8	69	
1057	Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos. <i>Acta Biomaterialia</i> , 2009 , 5, 374-80	10.8	69	

1056	Glass ceramic foams from coal ash and waste glass: production and characterisation. <i>Advances in Applied Ceramics</i> , 2006 , 105, 32-39	2.3	69
1055	Evaluation of human bone marrow stromal cell growth on biodegradable polymer/bioglass composites. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 342, 1098-107	3.4	69
1054	Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. <i>PLoS ONE</i> , 2014 , 9, e113319	3.7	69
1053	Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application. <i>Journal of Power Sources</i> , 2015 , 280, 379-386	8.9	68
1052	In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2009 , 3, 139-48	4.4	68
1051	TiO2 coatings on silicon carbide and carbon fibre substrates by electrophoretic deposition. <i>Journal of Materials Science</i> , 2004 , 39, 851-859	4.3	68
1050	Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. <i>Nanomedicine</i> , 2014 , 9, 1083-94	5.6	67
1049	Electrochemical investigations of magnesium in DMEM with biodegradable polycaprolactone coating as corrosion barrier. <i>Applied Surface Science</i> , 2013 , 282, 264-270	6.7	67
1048	Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass. <i>Biomacromolecules</i> , 2007 , 8, 2112-9	6.9	67
1047	Effect of Chemical Composition on the Optical Properties and Fracture Toughness of Transparent Magnesium Aluminate Spinel Ceramics. <i>Materials Transactions</i> , 2005 , 46, 996-1003	1.3	67
1046	Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. Journal of Materials Chemistry B, 2015 , 3, 1142-1148	7.3	66
1045	Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres To Tune the Release of Antibiotics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 13785-92	9.5	66
1044	Microstructure and properties of composite polyetheretherketone/Bioglass coatings deposited on TiBAllINb alloy for medical applications. <i>Applied Surface Science</i> , 2013 , 273, 62-67	6.7	66
1043	Controlled delivery of gentamicin using poly(3-hydroxybutyrate) microspheres. <i>International Journal of Molecular Sciences</i> , 2011 , 12, 4294-314	6.3	66
1042	Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. <i>Biofabrication</i> , 2016 , 8, 035005	10.5	65
1041	Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. <i>International Journal of Nanomedicine</i> , 2018 , 13, 1899-1915	7.3	65
1040	45S5Bioglass - based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 132, 208-15	6	65
1039	Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. <i>Electrochimica Acta</i> , 2017 , 232, 456-464	6.7	64

1038	Development of a bioactive glass-polymer composite for wound healing applications. <i>Materials Science and Engineering C</i> , 2017 , 76, 224-232	8.3	64	
1037	Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. <i>Materials Science and Engineering C</i> , 2016 , 68, 613-622	8.3	64	
1036	Electrophoretic deposition of biological macromolecules, drugs, and cells. <i>Biomacromolecules</i> , 2013 , 14, 3355-69	6.9	64	
1035	Alginate/Bioglass ^[] composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition. <i>Surface and Coatings Technology</i> , 2013 , 233, 49-56	4.4	64	
1034	Magnetic resonance imaging evaluation of remodeling by cardiac elastomeric tissue scaffold biomaterials in a rat model of myocardial infarction. <i>Tissue Engineering - Part A</i> , 2010 , 16, 3395-402	3.9	64	
1033	Long-term in vitro degradation of PDLLA/bioglass bone scaffolds in acellular simulated body fluid. <i>Acta Biomaterialia</i> , 2011 , 7, 829-40	10.8	64	
1032	Review In Situ high-temperature optical microscopy. <i>Journal of Materials Science</i> , 1999 , 34, 5419-5436	4.3	64	
1031	Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 4055-61	5.4	63	
1030	The surface functionalization of 45S5 Bioglass-based glass-ceramic scaffolds and its impact on bioactivity. <i>Journal of Materials Science: Materials in Medicine</i> , 2006 , 17, 979-87	4.5	63	
1029	Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000905	10.1	63	
1028	Bisphosphonate-based strategies for bone tissue engineering and orthopedic implants. <i>Tissue Engineering - Part B: Reviews</i> , 2012 , 18, 323-40	7.9	62	
1027	Influence of metakaolin characteristics on the mechanical properties of geopolymers. <i>Applied Clay Science</i> , 2013 , 83-84, 308-314	5.2	62	
1026	Densification and crystallization of glass powder compacts during constant heating rate sintering. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1996 , 219, 26-31	5.3	62	
1025	Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel. <i>RSC Advances</i> , 2013 , 3, 11247	3.7	61	
1024	Premature degradation of poly(alpha-hydroxyesters) during thermal processing of Bioglass-containing composites. <i>Acta Biomaterialia</i> , 2010 , 6, 756-62	10.8	61	
1023	Simple methods to fabricate Bioglass -derived glass Peramic scaffolds exhibiting porosity gradient. <i>Journal of Materials Science</i> , 2008 , 43, 4127-4134	4.3	61	
1022	Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition. <i>Acta Materialia</i> , 2001 , 49, 1189-1197	8.4	61	
1021	Prediction of the Poisson's ratio of porous materials. <i>Journal of Materials Science</i> , 1996 , 31, 1643-1646	4.3	61	

1020	Protective coatings for carbon bonded carbon fibre composites. <i>Ceramics International</i> , 2008 , 34, 1297-	13.01	60
1019	Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics. <i>Materials Research Bulletin</i> , 2001 , 36, 383-395	5.1	60
1018	Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. <i>International Journal of Nanomedicine</i> , 2017 , 12, 5223-5238	7:3	59
1017	Effect of ion release from Cu-doped 45S5 Bioglass on 3D endothelial cell morphogenesis. <i>Acta Biomaterialia</i> , 2015 , 19, 15-22	10.8	58
1016	Biomedical applications of soy protein: A brief overview. <i>Journal of Biomedical Materials Research - Part A</i> , 2016 , 104, 553-69	5.4	58
1015	TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity. <i>Acta Biomaterialia</i> , 2011 , 7, 2623-30	10.8	58
1014	Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection. <i>Biomaterials</i> , 2016 , 85, 128-41	15.6	57
1013	In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO-CaO-PO-NaO system. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7620-7630	7.3	57
1012	Electrophoretic deposition of PEEK-nano alumina composite coatings on stainless steel. <i>Surface and Coatings Technology</i> , 2009 , 203, 1349-1359	4.4	57
1011	Microstructure of nanocrystalline TiO2 films produced by electrophoretic deposition on TiBAlINb alloy. <i>Surface and Coatings Technology</i> , 2007 , 201, 7467-7471	4.4	57
1010	Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering. <i>Journal of Biomaterials Applications</i> , 2006 , 21, 109-18	2.9	57
1009	Multifunctional Chitosan-45S5 Bioactive Glass-Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Microsphere Composite Membranes for Guided Tissue/Bone Regeneration. <i>ACS Applied Materials</i> & Amp; Interfaces, 2015, 7, 20845-54	9.5	56
1008	Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. <i>Journal of Materials Science: Materials in Medicine</i> , 2013 , 24, 1261-9	4.5	56
1007	Stereolithographic Ceramic Manufacturing of High Strength Bioactive Glass. <i>International Journal of Applied Ceramic Technology</i> , 2015 , 12, 38-45	2	56
1006	Calcium phosphate-based composites as injectable bone substitute materials. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2010 , 94, 273-86	3.5	56
1005	Preparation and Characterization of Gallium Releasing 3-D Alginate Coated 45S5 Bioglass Based Scaffolds for Bone Tissue Engineering. <i>Advanced Engineering Materials</i> , 2010 , 12, B283-B291	3.5	56
1004	Bioactive ceramic coatings containing carbon nanotubes on metallic substrates by electrophoretic deposition. <i>Journal of Materials Science</i> , 2006 , 41, 8144-8151	4.3	56
1003	Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications. <i>Reactive and Functional Polymers</i> , 2013 , 73, 1340-1348	4.6	55

1002	Titania and titania liver nanocomposite coatings grown by electrophoretic deposition from aqueous suspensions. <i>Surface and Coatings Technology</i> , 2010 , 205, 2562-2571	4.4	55
1001	On the Effective Young's Modulus of Elasticity for Porous Materials: Microstructure Modelling and Comparison Between Calculated and Experimental Values. <i>Journal of the Mechanical Behavior of Materials</i> , 1993 , 4, 119-128	1.9	55
1000	Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6109-6124	7.3	55
999	Tackling Mg alloy corrosion by natural polymer coatings-A review. <i>Journal of Biomedical Materials Research - Part A</i> , 2016 , 104, 2628-41	5.4	55
998	Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 169, 176-182	6	54
997	Electrospun Zein Fibers Incorporating Poly(glycerol sebacate) for Soft Tissue Engineering. <i>Nanomaterials</i> , 2018 , 8,	5.4	54
996	Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests?. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 5068-5076	7.3	54
995	Influence of sand on the mechanical properties of metakaolin geopolymers. <i>Construction and Building Materials</i> , 2014 , 66, 442-446	6.7	54
994	Bioactive electrospun fibers of poly(glycerol sebacate) and poly(Etaprolactone) for cardiac patch application. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2012-25	10.1	54
993	Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. <i>Journal of the Royal Society Interface</i> , 2013 , 10, 20130263	4.1	54
992	Borosilicate glass matrix composites containing multi-wall carbon nanotubes. <i>Journal of the European Ceramic Society</i> , 2005 , 25, 1515-1523	6	54
991	Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. <i>Materials Science and Engineering C</i> , 2014 , 41, 320-8	8.3	53
990	Engineering of Metabolic Pathways by Artificial Enzyme Channels. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 168	5.8	53
989	Carbon nanotubes: do they toughen brittle matrices?. Journal of Materials Science, 2011, 46, 4770-4779	4.3	52
988	A study of the electrophoretic deposition of Bioglass suspensions using the Taguchi experimental design approach. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 2963-2970	6	52
987	Production of novel ceramic materials from coal fly ash and metal finishing wastes. <i>Resources, Conservation and Recycling</i> , 2008 , 52, 1329-1335	11.9	52
986	Cellulose NanocrystalsBioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance. <i>ACS Applied Materials & Discourse (Materials & Materials & Mat</i>	9.5	51
985	Hybrid hydrogels based on keratin and alginate for tissue engineering. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 5441-5451	7.3	51

984	Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiOlComposite Coatings on Stainless Steel (316L) Substrates. <i>Materials</i> , 2014 , 7, 1814-1829	3.5	51
983	Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes. <i>Journal of Materials Science</i> , 2007 , 42, 2030-2036	4.3	51
982	Characterization of TiO2 nanoparticle suspensions for electrophoretic deposition. <i>Journal of Nanoparticle Research</i> , 2008 , 10, 787-793	2.3	51
981	Poly(D,L-lactide) (PDLLA) foams with TiO2 nanoparticles and PDLLA/TiO2-Bioglass foam composites for tissue engineering scaffolds. <i>Journal of Materials Science</i> , 2006 , 41, 3999-4008	4.3	51
980	Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: A design of experiments (DoE) study. <i>Materials and Design</i> , 2017 , 130, 223-230	8.1	50
979	Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide. <i>Carbon</i> , 2014 , 67, 650	6- 66 .4	50
978	Designing dental composites with bioactive and bactericidal properties. <i>Materials Science and Engineering C</i> , 2015 , 52, 267-72	8.3	50
977	Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. <i>Construction and Building Materials</i> , 2018 , 188, 1077-1084	6.7	50
976	Development of bioactive composite coatings based on combination of PEEK, bioactive glass and Ag nanoparticles with antibacterial properties. <i>Surface and Coatings Technology</i> , 2016 , 301, 100-105	4.4	49
975	Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass based scaffolds in vitro and in vivo. <i>Tissue Engineering - Part A</i> , 2013 , 19, 707-15	3.9	49
974	Angiogenic potential of boron-containing bioactive glasses: in vitro study. <i>Journal of Materials Science</i> , 2017 , 52, 8785-8792	4.3	49
973	Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 331-9	4.1	49
972	Deposition of Al2O3-TiO2 Nanostructured Powders by Atmospheric Plasma Spraying. <i>Journal of Thermal Spray Technology</i> , 2008 , 17, 329-337	2.5	49
971	Characterisation of bioactive and resorbable polylactide/Bioglass composites by FTIR spectroscopic imaging. <i>Biomaterials</i> , 2004 , 25, 3931-8	15.6	49
970	Fracture behaviour of mullite fibre reinforced finullite matrix composites under quasi-static and ballistic impact loading. <i>Composites Science and Technology</i> , 2005 , 65, 325-333	8.6	49
969	Fabrication of graded porous ceramics using aluminallarbon powder mixtures. <i>Ceramics International</i> , 2001 , 27, 577-584	5.1	49
968	Ceramic coatings on carbon and metallic fibres by electrophoretic deposition. <i>Materials Letters</i> , 2001 , 51, 225-230	3.3	49
967	Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications. <i>Materials Science and Engineering C</i> , 2015 , 55, 137-44	8.3	48

(2010-2013)

966	Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass derived foams. <i>Journal of Biomaterials Applications</i> , 2013 , 27, 537-51	2.9	48	
965	Tuning of cell-biomaterial anchorage for tissue regeneration. <i>Advanced Materials</i> , 2013 , 25, 4049-57	24	48	
964	Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. <i>Journal of Non-Crystalline Solids</i> , 2016 , 432, 65-72	3.9	47	
963	Zein-based composites in biomedical applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 1656-1665	5.4	47	
962	Effect of substrate mechanics on cardiomyocyte maturation and growth. <i>Tissue Engineering - Part B: Reviews</i> , 2015 , 21, 157-65	7.9	47	
961	Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells. <i>Tissue Engineering - Part C: Methods</i> , 2016 , 22, 708-15	2.9	47	
960	Processing and bioactivity of 45S5 Bioglass([])-graphene nanoplatelets composites. <i>Journal of Materials Science: Materials in Medicine</i> , 2014 , 25, 1403-13	4.5	47	
959	Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. <i>Biomedical Materials (Bristol)</i> , 2014 , 9, 045014	3.5	47	
958	Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate-Bioglass composite coating on stainless steel: mechanical properties and in-vitro bioactivity assessment. <i>Materials Science and Engineering C</i> , 2014 , 40, 55-64	8.3	47	
957	Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. <i>BMC Cell Biology</i> , 2017 , 18, 15		47	
956	Synthesis of copper-containing bioactive glass nanoparticles using a modified StBer method for biomedical applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 150, 159-167	6	47	
955	AC vs. DC electrophoretic deposition of hydroxyapatite on titanium. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 2715-2721	6	47	
954	Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. <i>International Journal of Solids and Structures</i> , 2011 , 48, 257-268	3.1	47	
953	Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. <i>Materials Science and Engineering C</i> , 2017 , 77, 780-789	8.3	46	
952	Fabrication of Gelatin Methacrylate (GelMA) Scaffolds with Nano- and Micro-Topographical and Morphological Features. <i>Nanomaterials</i> , 2019 , 9,	5.4	46	
951	Electrophoretic deposition of nanoscale TiO2: technology and applications. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 265-283	6	46	
950	Strengthening of dental adhesives via particle reinforcement. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 37, 100-8	4.1	46	
949	Fabrication of CNT-SiC/SiC composites by electrophoretic deposition. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 1131-1137	6	46	

948	Borosilicate and lead silicate glass matrix composites containing pyrochlore phases for nuclear waste encapsulation. <i>Journal of Nuclear Materials</i> , 2004 , 327, 148-158	3.3	46
947	Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications. <i>Materials Science and Engineering C</i> , 2016 , 69, 569-76	8.3	46
946	Composite Colloidal Gels Made of Bisphosphonate-Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. <i>Advanced Functional Materials</i> , 2017 , 27, 170	3458	45
945	Evaluation of Electrospun Poly(ECaprolactone)/Gelatin Nanofiber Mats Containing Clove Essential Oil for Antibacterial Wound Dressing. <i>Pharmaceutics</i> , 2019 , 11,	6.4	45
944	Fabrication of electrospun poly (3-hydroxybutyrate)/poly (Eaprolactone)/silica hybrid fibermats with and without calcium addition. <i>European Polymer Journal</i> , 2014 , 55, 222-234	5.2	45
943	Development and characterisation of high-density oxide fibre-reinforced oxide ceramic matrix composites with improved mechanical properties. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 1631-1639	6	45
942	Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. <i>Journal of Hazardous Materials</i> , 2010 , 176, 704-9	12.8	45
941	Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films. <i>Soft Matter</i> , 2011 , 7, 6705	3.6	44
940	Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash. <i>Journal of Materials Science</i> , 1999 , 34, 4413-4423	4.3	44
939	Toughening and strengthening of glass by A1203 platelets. <i>Journal of Materials Science Letters</i> , 1996 , 15, 60-63		44
938	Electrospun Polyhydroxybutyrate/Poly(Ecaprolactone)/Sol-Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 14540-14548	9.5	43
937	Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 118, 41-8	6	43
936	Antibacterial and Bioactive Coatings Based on Radio Frequency Co-Sputtering of Silver Nanocluster-Silica Coatings on PEEK/Bioactive Glass Layers Obtained by Electrophoretic Deposition. <i>ACS Applied Materials & Deposition</i> .	9.5	43
935	In vitro Study of the Antibacterial Activity of Bioactive Glass-ceramic Scaffolds. <i>Advanced Engineering Materials</i> , 2009 , 11, B67-B70	3.5	43
934	Dependence of Ultrasonic Velocity on Porosity and Pore Shape in Sintered Materials. <i>Journal of Nondestructive Evaluation</i> , 1997 , 16, 187-192	2.1	43
933	Fabrication, characterisation and assessment of bioactivity of poly(d,l lactid acid) (PDLLA)/TiO2 nanocomposite films. <i>Composites Part A: Applied Science and Manufacturing</i> , 2005 , 36, 721-727	8.4	43
932	Improved Mechanical Reliability of Bone Tissue Engineering (Zirconia) Scaffolds by Electrospraying. Journal of the American Ceramic Society, 2006 , 89, 1534-1539	3.8	43
931	Accelerated Degradation Behavior and Cytocompatibility of Pure Iron Treated with Sandblasting. ACS Applied Materials & amp; Interfaces, 2016, 8, 26482-26492	9.5	43

930	Antibacterial 45S5 Bioglass -based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3367-3378	7.3	42	
929	Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2016 , 10, 938-954	4.4	42	
928	Cancer research by means of tissue engineeringis there a rationale?. <i>Journal of Cellular and Molecular Medicine</i> , 2013 , 17, 1197-206	5.6	42	
927	Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 159	5.8	42	
926	Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. <i>Cell and Tissue Research</i> , 2014 , 356, 97-107	4.2	42	
925	Carbon nanotube-nanocrystal heterostructures fabricated by electrophoretic deposition. <i>Nanotechnology</i> , 2008 , 19, 195301	3.4	42	
924	Polyetheretherketone (PEEK) Coatings on Stainless Steel by Electrophoretic Deposition. <i>Advanced Engineering Materials</i> , 2008 , 10, 559-564	3.5	42	
923	Sintering densification curve: A practical approach for its construction from dilatometric shrinkage data. <i>Science of Sintering</i> , 2008 , 40, 117-122	0.7	42	
922	Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. <i>Surface and Coatings Technology</i> , 2020 , 381, 125138	4.4	42	
921	Oxidized Alginate-Gelatin Hydrogel: A Favorable Matrix for Growth and Osteogenic Differentiation of Adipose-Derived Stem Cells in 3D. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 1730-1737	5.5	41	
920	Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 64	4.5	41	
919	Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. Journal of Colloid and Interface Science, 2012 , 375, 102-5	9.3	41	
918	Solgel based fabrication and characterization of new bioactive glassperamic composites for dental applications. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 3051-3061	6	41	
917	Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 4781-4791	6	41	
916	45S5-Bioglass([])-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay. <i>Tissue Engineering - Part A</i> , 2013 , 19, 2703-12	3.9	41	
915	Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. <i>Science and Technology of Advanced Materials</i> , 2013 , 14, 055007	7.1	41	
914	Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. <i>Advances in Applied Ceramics</i> , 2007 , 106, 186-195	2.3	41	
913	Thermal residual stresses and their toughening effect in Al2O3 platelet reinforced glass. <i>Acta Materialia</i> , 1999 , 47, 3233-3240	8.4	41	

912	Preparation, microstructure and mechanical properties of metal-particulate/glass-matrix composites. <i>Composites Science and Technology</i> , 1996 , 56, 1415-1424	8.6	41
911	Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. <i>Materials Science and Engineering C</i> , 2019 , 103, 109764	8.3	40
910	Poly(Etaprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. <i>Materials Science and Engineering C</i> , 2019 , 103, 109712	8.3	40
909	Electrophoretic deposition of tetracycline hydrochloride loaded halloysite nanotubes chitosan/bioactive glass composite coatings for orthopedic implants. <i>Surface and Coatings Technology</i> , 2017 , 327, 146-157	4.4	40
908	PDLLA scaffolds with Cu- and Zn-doped bioactive glasses having multifunctional properties for bone regeneration. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 746-756	5.4	40
907	Ag-doped 45S5 Bioglass -based bone scaffolds by molten salt ion exchange: processing and characterisation. <i>Journal of Materials Science: Materials in Medicine</i> , 2011 , 22, 557-69	4.5	40
906	MnO2-filled multiwalled carbon nanotube/polyaniline nanocomposites with enhanced interfacial interaction and electronic properties. <i>Scripta Materialia</i> , 2009 , 61, 592-595	5.6	40
905	Electrophoretic deposition of chitosan/bioactive glass/silica coatings on stainless steel and WE43 Mg alloy substrates. <i>Surface and Coatings Technology</i> , 2018 , 344, 553-563	4.4	39
904	Porous Bioactive Nanofibers via Cryogenic Solution Blow Spinning and Their Formation into 3D Macroporous Scaffolds. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1442-1449	5.5	39
903	Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. <i>Biomedical Materials (Bristol)</i> , 2016 , 11, 035017	3.5	39
902	Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy. <i>International Journal of Nanomedicine</i> , 2015 , 10, 6985-96	7.3	39
901	In vitro evaluation of 45S5 Bioglass derived glass-ceramic scaffolds coated with carbon nanotubes. <i>Journal of Biomedical Materials Research - Part A,</i> 2011 , 99, 435-44	5.4	39
900	Bioactivity of polyurethane-based scaffolds coated with Bioglass. <i>Biomedical Materials (Bristol)</i> , 2007 , 2, 93-101	3.5	39
899	Microwave processing of starch-based porous structures for tissue engineering scaffolds. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 1332-1339	2.9	39
898	Processing glasspyrochlore composites for nuclear waste encapsulation. <i>Journal of Nuclear Materials</i> , 2005 , 341, 12-18	3.3	39
897	Physical and Antibacterial Properties of Peppermint Essential Oil Loaded Poly (-caprolactone) (PCL) Electrospun Fiber Mats for Wound Healing. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 346	5.8	39
896	3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering. <i>Materials</i> , 2020 , 13,	3.5	39
895	Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass© scaffolds for MC3T3-E1 cell stimulation and drug release. <i>Materials Science and Engineering C</i> , 2015 , 56, 473-80	8.3	38

(2008-2020)

894	Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. <i>Biofabrication</i> , 2020 , 12, 045004	10.5	38
893	Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo. <i>Journal of Materials Science: Materials in Medicine</i> , 2016 , 27, 119	4.5	38
892	Poly(glycerol sebacate)/poly(butylene succinate-butylene dilinoleate) fibrous scaffolds for cardiac tissue engineering. <i>Tissue Engineering - Part C: Methods</i> , 2015 , 21, 585-96	2.9	38
891	Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. <i>Nanotoxicology</i> , 2011 , 5, 372-80	5.3	38
890	Actively brazed alumina to alumina joints using CuTi, CuZr and eutectic AgCuTi filler alloys. <i>Ceramics International</i> , 2010 , 36, 2287-2295	5.1	38
889	Poly(3- hydroxybutyrate)/Bioglass([]) composite films containing carbon nanotubes. <i>Nanotechnology</i> , 2007 , 18, 075701	3.4	38
888	Effect of the redox state and concentration of iron on the crystallization behavior of iron-rich aluminosilicate glasses. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 1246-1253	3.9	38
887	Fabrication technologies for oxidebxide ceramic matrix composites based on electrophoretic deposition. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 1567-1576	6	38
886	Composite ceramic-metal coatings by means of combined electrophoretic deposition and galvanic methods. <i>Journal of Materials Science</i> , 2004 , 39, 839-844	4.3	38
885	Glass-ceramics from mixtures of coal ash and soda-lime glass by the petrurgic method. <i>Journal of Materials Science Letters</i> , 2002 , 21, 975-980		38
884	Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 9368-84	6.3	37
883	Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. <i>Scientific Reports</i> , 2016 , 6, 23140	4.9	37
882	Novel electrospun poly(glycerol sebacate) Dein fiber mats as candidate materials for cardiac tissue engineering. <i>European Polymer Journal</i> , 2016 , 75, 504-513	5.2	37
881	In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles. <i>Journal of Non-Crystalline Solids</i> , 2014 , 387, 41-46	3.9	37
880	Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	37
879	Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 557, 54-58	5.3	37
878	Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings. <i>Biomedical Materials (Bristol)</i> , 2009 , 4, 055002	3.5	37
877	Toughening effects quantification in glass matrix composite reinforced by alumina platelets. <i>Acta Materialia</i> , 2008 , 56, 2908-2918	8.4	37

876	Novel hybrid PET/DFATiO2 nanocomposites by in situ polycondensation. <i>Materials Letters</i> , 2005 , 59, 2300-2304	3.3	37
875	Sintering of glass matrix composites containing Al2O3 platelet inclusions. <i>Journal of Materials Science</i> , 1994 , 29, 4273-4278	4.3	37
874	Electrophoretic Deposition of Bioadaptive Drug Delivery Coatings on Magnesium Alloy for Bone Repair. <i>ACS Applied Materials & Acs Applied & </i>	9.5	37
873	Synthesis of Monodispersed Ag-Doped Bioactive Glass Nanoparticles via Surface Modification. <i>Materials</i> , 2016 , 9,	3.5	37
872	Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. <i>Biomedical Materials (Bristol)</i> , 2017 , 12, 035008	3.5	36
871	Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	36
870	Protein interactions with bioactive glass surfaces: A review. <i>Applied Materials Today</i> , 2019 , 15, 350-371	6.6	36
869	Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. <i>Biomedical Glasses</i> , 2015 , 1,	2.7	36
868	Biosilicate-gelatine bone scaffolds by the foam replica technique: development and characterization. <i>Science and Technology of Advanced Materials</i> , 2013 , 14, 045008	7.1	36
867	Solgel based fabrication of novel glass-ceramics and composites for dental applications. <i>Materials Science and Engineering C</i> , 2010 , 30, 730-739	8.3	36
866	Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor applications. Journal of the European Ceramic Society, 2008 , 28, 2801-2807	6	36
865	Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass nanocomposites. <i>Materials Science and Engineering C</i> , 2008 , 28, 1-10	8.3	36
864	Application of Raman microspectroscopy to the characterisation of bioactive materials. <i>Materials Characterization</i> , 2002 , 49, 255-260	3.9	36
863	Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	36
862	Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2016 , 10, E497-E509	4.4	35
861	3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. <i>Biofabrication</i> , 2020 , 12, 045005	10.5	35
860	Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, e495-e512	4.4	35
859	Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles. <i>Materials Letters</i> , 2017 , 205, 257-260	3.3	35

(2009-2014)

858	Electrophoretic deposition of nanostructured TiO2/alginate and TiO2-bioactive glass/alginate composite coatings on stainless steel. <i>Advances in Applied Ceramics</i> , 2014 , 113, 42-49	2.3	35
857	Composite surgical sutures with bioactive glass coating. <i>Journal of Biomedical Materials Research Part B</i> , 2003 , 67, 618-26		35
856	Fracture surface roughness and toughness of Al2O3-platelet reinforced glass matrix composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2002 , 33, 125-131	8.4	35
855	Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering. <i>Advanced Functional Materials</i> , 2020 , 30, 1908612	15.6	35
854	Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis: A paradigm for metabolomics-based evaluation of biomaterial design. <i>Acta Biomaterialia</i> , 2019 , 88, 224-240	10.8	35
853	Electrophoretic deposition of chitosan/gelatin/bioactive glass composite coatings on 316L stainless steel: A design of experiment study. <i>Surface and Coatings Technology</i> , 2019 , 358, 976-986	4.4	35
852	Mesoporous 45S5 bioactive glass: synthesis, in vitro dissolution and biomineralization behavior. Journal of Materials Chemistry B, 2017 , 5, 8786-8798	7.3	34
851	Characterisation of Bioglass based foams developed via replication of natural marine sponges. <i>Advances in Applied Ceramics</i> , 2015 , 114, S56-S62	2.3	34
850	Electrospun nanofibrous biodegradable polyester coatings on Bioglass -based glass-ceramics for tissue engineering. <i>Materials Chemistry and Physics</i> , 2009 , 118, 420-426	4.4	34
849	Ultrasonic Characterisation of Porous Biomaterials Across Different Frequencies. <i>Strain</i> , 2009 , 45, 34-4	41.7	34
848	Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. <i>Biomedical Materials (Bristol)</i> , 2009 , 4, 015008	3.5	34
847	FRACTURE CHARACTERISTICS OF BOROSILICATE GLASSES REINFORCED BY METALLIC PARTICLES. Fatigue and Fracture of Engineering Materials and Structures, 1997 , 20, 1235-1253	3	34
846	Vascular Tissue Engineering: Effects of Integrating Collagen into a PCL Based Nanofiber Material. BioMed Research International, 2017 , 2017, 9616939	3	33
845	Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol-gel process and modified StBer method. <i>Journal of Non-Crystalline Solids</i> , 2018 , 483, 26-36	3.9	33
844	Hydrogel matrices based on elastin and alginate for tissue engineering applications. <i>International Journal of Biological Macromolecules</i> , 2018 , 114, 614-625	7.9	33
843	Novel ion-doped mesoporous glasses for bone tissue engineering: Study of their structural characteristics influenced by the presence of phosphorous oxide. <i>Journal of Non-Crystalline Solids</i> , 2017 , 455, 90-97	3.9	33
842	Multifunctional bioactive glass scaffolds coated with layers of poly(D,L-lactide-co-glycolide) and poly(n-isopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin. <i>Materials Science and Engineering C</i> , 2013 , 33, 3760-7	8.3	33
841	Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 2139-44	4.5	33

840	Processing Technologies for 3D Nanostructured Tissue Engineering Scaffolds. <i>Advanced Engineering Materials</i> , 2010 , 12, B467-B487	3.5	33
839	Plasma treatment of air pollution control residues. Waste Management, 2008, 28, 1254-62	8.6	33
838	In vitro study of polycaprolactone/bioactive glass composite coatings on corrosion and bioactivity of pure Mg. <i>Applied Surface Science</i> , 2015 , 355, 832-841	6.7	32
837	The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering. <i>Materials Science and Engineering C</i> , 2015 , 54, 50-60	8.3	32
836	Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 130, 199-206	6	32
835	Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning. <i>Materials</i> , 2018 , 11,	3.5	32
834	Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 3556-61	5.4	32
833	Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase. <i>Journal of Hazardous Materials</i> , 2011 , 196, 86-92	12.8	32
832	Recycling of microwave inertised asbestos containing waste in refractory materials. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 1855-1858	6	32
831	Microwave processing of glass matrix composites containing controlled isolated porosity. <i>Journal of the European Ceramic Society</i> , 2001 , 21, 1073-1080	6	32
830	Electrospun fibers of poly(butylene succinatedodilinoleic succinate) and its blend with poly(glycerol sebacate) for soft tissue engineering applications. <i>European Polymer Journal</i> , 2016 , 81, 295-306	5.2	32
829	Cu-releasing bioactive glass/polycaprolactone coating on Mg with antibacterial and anticorrosive properties for bone tissue engineering. <i>Biomedical Materials (Bristol)</i> , 2017 , 13, 015001	3.5	31
828	Electrophoretic deposition of chitosan/Bioglass[] and chitosan/Bioglass[] /TiO2 composite coatings for bioimplants. <i>Ceramics International</i> , 2016 , 42, 14206-14213	5.1	31
827	Collagen as Coating Material for 45S5 Bioactive Glass-Based Scaffolds for Bone Tissue Engineering. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	31
826	Enhancing In Vitro Bioactivity of Melt-Derived 45S5 Bioglass by Comminution in a Stirred Media Mill. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 150-156	3.8	31
825	On the viscosity of glass composites containing rigid inclusions. <i>Materials Letters</i> , 1998 , 34, 285-289	3.3	31
824	Numerical models for thermal residual stresses in Al2O3 platelets/borosilicate glass matrix composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2002 , 323, 246-250	5.3	31
823	Reliability of the chevron-notch technique for fracture toughness determination in glass. <i>Materials Science & Microstructure and Processing</i> , 2003 , 347, 102-108	5.3	31

(2007-2016)

822	Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. <i>RSC Advances</i> , 2016 , 6, 95101-95111	3.7	31
821	Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. <i>Bioactive Materials</i> , 2021 , 6, 890-904	16.7	31
820	Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy. <i>Applied Surface Science</i> , 2017 , 405, 441-4	4 <mark>8</mark> 7	30
819	Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. <i>Electrochimica Acta</i> , 2019 , 307, 465-473	6.7	30
818	Ion Release, Hydroxyapatite Conversion, and Cytotoxicity of Boron-Containing Bioactive Glass Scaffolds. <i>International Journal of Applied Glass Science</i> , 2016 , 7, 206-215	1.8	30
817	45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering. <i>RSC Advances</i> , 2014 , 4, 56156-56164	3.7	30
816	AC electrophoretic deposition of organic-inorganic composite coatings. <i>Journal of Colloid and Interface Science</i> , 2013 , 392, 167-171	9.3	30
815	Technologies for Multilayered Scaffolds Suitable for Interface Tissue Engineering. <i>Advanced Engineering Materials</i> , 2014 , 16, 319-327	3.5	30
814	Electro co-deposition of NiAl2O3 composite coatings. <i>Journal of Materials Science</i> , 2012 , 47, 5361-5373	4.3	30
813	Fabrication and characterization of electrospun poly-DL-lactide (PDLLA) fibrous coatings on 45S5 Bioglass substrates for bone tissue engineering applications. <i>Journal of Chemical Technology and Biotechnology</i> , 2009 , 85, 768-774	3.5	30
812	Collagen release kinetics of surface functionalized 45S5 Bioglass-based porous scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 86, 987-95	5.4	30
811	In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2004 , 15, 729-34	4.5	30
810	Fracture behaviour of hybrid glass matrix composites: thermal ageing effects. <i>Composites Part A: Applied Science and Manufacturing</i> , 2003 , 34, 1177-1185	8.4	30
809	Fabrication and cytotoxicity assessment of novel polysiloxane/bioactive glass films for biomedical applications. <i>Ceramics International</i> , 2016 , 42, 15442-15448	5.1	30
808	Cu-Releasing Bioactive Glass Coatings and Their in Vitro Properties. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5812-5820	9.5	30
807	Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study. <i>Scientific Reports</i> , 2019 , 9, 1150	4.9	29
806	Solgel route to carbon nanotube borosilicate glass composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2009 , 40, 837-845	8.4	29
805	Characterising the sintering behaviour of pulverised fuel ash using heating stage microscopy. Materials Characterization, 2007 , 58, 980-988	3.9	29

804	Coupling Mechanical Competence and Bioresorbability in Bioglass -Derived Tissue Engineering Scaffolds. <i>Advanced Engineering Materials</i> , 2006 , 8, 285-289	3.5	29
803	A new strategy for developing chitosan conversion coating on magnesium substrates for orthopedic implants. <i>Applied Surface Science</i> , 2019 , 466, 854-862	6.7	29
802	Bioactive glass-ceramic scaffolds: Processing and properties. MRS Bulletin, 2017, 42, 226-232	3.2	28
801	Comparison of the effects of 45S5 and 1393 bioactive glass microparticles on hMSC behavior. Journal of Biomedical Materials Research - Part A, 2017 , 105, 2772-2782	5.4	28
800	Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. <i>Biomaterials Science</i> , 2020 , 8, 2143-2155	7.4	28
799	Crystallization and Melting Behavior of Poly(Butylene Succinate) Nanocomposites Containing Silica-Nanotubes and Strontium Hydroxyapatite Nanorods. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 678-692	3.9	28
798	Low temperature spark plasma sintering of 45S5 Bioglass [] . <i>Journal of Non-Crystalline Solids</i> , 2013 , 362, 25-29	3.9	28
797	45S5 Bioglass derived scaffolds coated with organic-inorganic hybrids containing graphene. <i>Materials Science and Engineering C</i> , 2013 , 33, 3592-600	8.3	28
796	Novel approach towards aligned PCL-Collagen nanofibrous constructs from a benign solvent system. <i>Materials Science and Engineering C</i> , 2017 , 72, 278-283	8.3	28
795	Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass - based scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 1029-37	5.4	28
794	Electrochemical behavior of nanostructured TiO2/alginate composite coating on magnesium alloy AZ91D via electrophoretic deposition. <i>Surface and Coatings Technology</i> , 2015 , 265, 212-217	4.4	28
793	Ash from sunflower husk as raw material for ceramic products. <i>Ceramics International</i> , 2011 , 37, 377-38.	55.1	28
792	Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3ltathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). <i>Journal of the European Ceramic Society</i> , 2009 , 29, 1125-1132	6	28
791	Comparison of rapid and slow sintered pulverised fuel ash. <i>Fuel</i> , 2008 , 87, 187-195	7.1	28
790	Electrophoretic Deposition Forming of Nickel-Coated-Carbon-Fiber-Reinforced Borosilicate-Glass-Matrix Composites. <i>Journal of the American Ceramic Society</i> , 2004 , 83, 1885-1888	3.8	28
789	Glass and Glass-Ceramic Matrix Composite Materials <i>Journal of the Ceramic Society of Japan</i> , 2001 , 109, S99-S109		28
788	Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications. <i>EXPRESS Polymer Letters</i> , 2015 , 9, 773-789	3.4	28
787	Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 3899-3914	5.5	28

Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges. <i>Annals of Biomedical Engineering</i> , 2016 , 44, 1881-93	4.7	28
Fibronectin Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalization. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 68	5.8	27
Influence of zinc ions on structure, bioactivity, biocompatibility and antibacterial potential of melt-derived and gel-derived glasses from CaO-SiO2 system. <i>Journal of Non-Crystalline Solids</i> , 2019 , 511, 86-99	3.9	27
Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 552	5.8	27
A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. <i>Materials Science and Engineering C</i> , 2018 , 82, 277-283	8.3	27
ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 7936-79	943	27
Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 7974-7988	7.3	27
Mechanical Properties of Low-Density SiC-Coated Carbon-Bonded Carbon Fiber Composites. <i>International Journal of Applied Ceramic Technology</i> , 2012 , 9, 401-412	2	27
Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. <i>Materials Science and Engineering C</i> , 2015 , 50, 160-72	8.3	27
Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. <i>Materials Research Bulletin</i> , 2014 , 49, 399-404	5.1	27
Development of titania coatings on glass foams. Construction and Building Materials, 2009, 23, 2554-255	8 .7	27
Erosion protective coatings for low density, highly porous carbon/carbon composites. <i>Carbon</i> , 2009 , 47, 1511-1519	10.4	27
Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings. <i>Ceramics International</i> , 2010 , 36, 307-312	5.1	27
Electrophoretic Deposition of Carbon Nanotubes on Metallic Surfaces. <i>Key Engineering Materials</i> , 2006 , 314, 141-146	0.4	27
Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2002026	10.1	27
Functionalization of steel surfaces with organic acids: Influence on wetting and corrosion behavior. <i>Applied Surface Science</i> , 2017 , 404, 326-333	6.7	26
Electrophoretic co-deposition of Fe2O3 and Mn1,5Co1,5O4: Processing and oxidation performance of Fe-doped Mn-Co coatings for solid oxide cell interconnects. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 3768-3777	6	26
Incorporation of Cu-Containing Bioactive Glass Nanoparticles in Gelatin-Coated Scaffolds Enhances Bioactivity and Osteogenic Activity. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1546-1557	5.5	26
	Fibronectin Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalization. Frontiers in Bioengineering and Biotechnology, 2019, 7, 68 Influence of zinc ions on structure, bioactivity, biocompatibility and antibacterial potential of melt-derived and gel-derived glasses from CaO-SiO2 system. Journal of Non-Crystalline Solids, 2019, 511, 86-99 Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. Frontiers in Bioengineering and Biotechnology, 2020, 8, 552 A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Materials Science and Engineering C, 2018, 82, 277-283 ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. Journal of Materials Chemistry B, 2016, 4, 7936-79 Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair. Journal of Materials Chemistry B, 2016, 4, 7974-7988 Mechanical Properties of Low-Density SiC-Coated Carbon-Bonded Carbon Fiber Composites. International Journal of Applied Ceranic Technology, 2012, 9, 401-412 Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Materials Science and Engineering C, 2015, 50, 160-72 Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Materials Research Bulletin, 2014, 49, 399-404 Development of titania coatings on glass foams. Construction and Building Materials, 2009, 23, 2554-255 Erosion protective coatings for low density, highly porous carbon/carbon composites. Carbon, 2009, 47, 1511-1519 Electrophoretic Deposition of Carbon Nanotubes and bioactive glass p	Fibronectin Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalization. Frontiers in Bioengineering and Biotechnology, 2019, 7, 68 Influence of zinc ions on structure, bioactivity, biocompatibility and antibacterial potential of melt-derived and gel-derived glasses from CaO-SiO2 system. Journal of Non-Crystalline Solids, 2019, 511, 86-99 Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. Frontiers in Bioengineering and Biotechnology, 2020, 8, 552 A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Materials Science and Engineering C, 2018, 82, 277-283 ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. Journal of Materials Science and Engineering C, 2016, 47, 7936-7949 Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair. Journal of Materials Chemistry B, 2016, 4, 7974-7988 Mechanical Properties of Low-Density SiC-Coated Carbon-Bonded Carbon Fiber Composites. International Journal of Applied Ceramic Technology, 2012, 9, 401-412 Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Materials Science and Engineering C, 2015, 50, 160-72 Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Materials Research Bulletin, 2014, 49, 399-404 Development of titania coatings for low density, highly porous carbon/carbon composites. C

768	Tailoring the surface characteristics of electrophoretically deposited chitosan-based bioactive glass composite coatings on titanium implants via grit blasting. <i>Progress in Organic Coatings</i> , 2018 , 123, 362-3	1 73 8	26
767	Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. <i>Journal of Applied Microbiology</i> , 2014 , 116, 1438-46	4.7	26
766	Evaluation of silica-nanotubes and strontium hydroxyapatite nanorods as appropriate nanoadditives for poly(butylene succinate) biodegradable polyester for biomedical applications. <i>Composites Part B: Engineering</i> , 2014 , 60, 49-59	10	26
765	Anti-biofilm properties of bioactive glasses embedding organic active compounds. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 672-679	5.4	26
764	Anode-Selective Electrophoretic Deposition of a Bioactive Glass/Sulfone-Containing Click Polyester Composite. <i>Macromolecules</i> , 2012 , 45, 3326-3334	5.5	26
763	Effect of uniaxial load on the sintering behaviour of 45S5 Bioglass powder compacts. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 999-1007	6	26
762	Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment. <i>Journal of the Royal Society Interface</i> , 2009 , 6, 401-9	4.1	26
761	Electrophoretic deposition infiltration of 2-D woven SiC fibre mats with mixed sols of mullite composition. <i>Journal of the European Ceramic Society</i> , 1997 , 17, 1545-1550	6	26
760	Processing of novel glass matrix composites by microwave heating. <i>Journal of Materials Processing Technology</i> , 2004 , 155-156, 1749-1755	5.3	26
759	Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. <i>Nanomaterials</i> , 2020 , 10,	5.4	26
758	Soft-matrices based on silk fibroin and alginate for tissue engineering. <i>International Journal of Biological Macromolecules</i> , 2016 , 93, 1420-1431	7.9	26
757	Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 624621	5.8	26
756	Electrophoretic deposition of lawsone loaded bioactive glass (BG)/chitosan composite on polyetheretherketone (PEEK)/BG layers as antibacterial and bioactive coating. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 3111-3122	5.4	26
755	Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. <i>Acta Biomaterialia</i> , 2021 , 129, 1-17	10.8	26
754	Biofabrication of a co-culture system in an osteoid-like hydrogel matrix. <i>Biofabrication</i> , 2017 , 9, 025016	10.5	25
753	Bioactive glasses meet phytotherapeutics: The potential of natural herbal medicines to extend the functionality of bioactive glasses. <i>Biomaterials</i> , 2019 , 217, 119288	15.6	25
752	45S5 Bioglass([])-MWCNT composite: processing and bioactivity. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 199	4.5	25
751	The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. <i>Colloids and Surfaces B:</i> Riginiterfaces 2015, 136, 93-8	6	25

(2015-2015)

750	2015, 17, 22-32		25
749	Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. <i>Materials Today Bio</i> , 2020 , 5, 100041	9.9	25
748	Bioactive layers based on black glasses on titanium substrates. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 590-601	3.8	25
747	A facile and scalable method to produce superhydrophic stainless steel surface. <i>Applied Surface Science</i> , 2014 , 311, 753-757	6.7	25
746	Micropatterned Down-Converting Coating for White Bio-Hybrid Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2017 , 27, 1601792	15.6	25
745	Uniform Surface Modification of 3D Bioglass([])-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 177	5.8	25
744	In Situ Characterization of the Shrinkage Behavior of Ceramic Powder Compacts during Sintering by Using Heating Microscopy. <i>Materials Characterization</i> , 1998 , 41, 109-121	3.9	25
743	Numerical modelling of the fracture behaviour of a glass matrix composite reinforced with alumina platelets. <i>Composites Part A: Applied Science and Manufacturing</i> , 2003 , 34, 43-51	8.4	25
742	Investigation of the mechanical properties of Mo-reinforced glass-matrix composites. <i>Journal of Non-Crystalline Solids</i> , 2004 , 344, 88-93	3.9	25
741	Processing of platelet-reinforced glass matrix composites: effect of inclusions on sintering anisotropy. <i>Journal of Materials Processing Technology</i> , 1999 , 96, 92-101	5.3	25
740	Assessment of damage induced by thermal shock in SiC- fiber-reinforced borosilicate glass composites. <i>Composites Science and Technology</i> , 1999 , 59, 105-112	8.6	25
739	Determination of stress concentration factors in porous materials. <i>Journal of Materials Science Letters</i> , 1996 , 15, 534-536		25
738	A Review on Natural Fiber-Reinforced Geopolymer and Cement-Based Composites. <i>Materials</i> , 2020 , 13,	3.5	25
737	Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe. <i>Corrosion Science</i> , 2021 , 182, 109278	6.8	25
736	Synthesis and In Vitro Activity Assessment of Novel Silicon Oxycarbide-Based Bioactive Glasses. Materials, 2016 , 9,	3.5	25
735	Electrophoretic deposition and characterization of HA/chitosan nanocomposite coatings on Ti6Al7Nb alloy. <i>Metals and Materials International</i> , 2015 , 21, 96-103	2.4	24
734	A comparative study of the effects of different bioactive fillers in PLGA matrix composites and their suitability as bone substitute materials: A thermo-mechanical and in vitro investigation. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 50, 277-89	4.1	24
733	In vitro cell response to Co-containing 1,393 bioactive glass. <i>Materials Science and Engineering C</i> , 2015 , 57, 157-63	8.3	24

732	3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. <i>Materials Science and Engineering C</i> , 2020 , 116, 111189	8.3	24
731	In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass. <i>Materials</i> , 2017 , 10,	3.5	24
730	Bioactive Glass Fiber-Reinforced PGS Matrix Composites for Cartilage Regeneration. <i>Materials</i> , 2017 , 10,	3.5	24
729	Development and characterization of niobium-releasing silicate bioactive glasses for tissue engineering applications. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 871-876	6	24
728	Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2018 , 57, 55-65	1.9	24
727	Exploiting Bisphosphonate-Bioactive-Glass Interactions for the Development of Self-Healing and Bioactive Composite Hydrogels. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1952-1959	4.8	24
726	Application of a neural network approach to the electrophoretic deposition of PEEKBlumina composite coatings. <i>Materials Research Bulletin</i> , 2009 , 44, 1494-1501	5.1	24
725	Behavior of Nicalon Fiber-reinforced glass-matrix composites under thermal cycling conditions. <i>Composites Part A: Applied Science and Manufacturing</i> , 1998 , 29, 1343-1352	8.4	24
724	Microstructural investigations in cordieritethullite refractories. Ceramics International, 2005, 31, 417-4	325.1	24
723	Determination of surface area and porosity of solgel derived ceramic powders in the system TiO2BiO2Al2O3. <i>Powder Technology</i> , 2001 , 114, 106-111	5.2	24
722	Processing and mechanical properties of biocompatible Al2O3 platelet-reinforced TiO2. <i>Journal of Materials Science</i> , 1996 , 31, 4375-4380	4.3	24
721	Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001876	10.1	24
720	Novel poly(3-hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications. <i>Polymer International</i> , 2016 , 65, 661-674	3.3	24
719	Sonosynthesis of Vaterite-Type Calcium Carbonate. <i>Crystal Growth and Design</i> , 2017 , 17, 2351-2356	3.5	23
718	Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings. <i>Applied Surface Science</i> , 2017 , 416, 454-460	6.7	23
717	Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer. <i>Materials Science and Engineering C</i> , 2017 , 77, 342-351	8.3	23
716	Preparation and characterization of electrosprayed daidzein[baded PHBV microspheres. <i>Materials Letters</i> , 2015 , 158, 66-69	3.3	23
715	Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds. <i>Journal of the Royal Society Interface</i> , 2015 , 12, 0509	4.1	23

(2018-2014)

714	Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 4830-42	3.6	23	
713	Sonochemical processing and characterization of composite materials based on soy protein and alginate containing micron-sized bioactive glass particles. <i>Journal of Molecular Structure</i> , 2014 , 1073, 87-96	3.4	23	
712	Novel Biodegradable and Biocompatible Poly(3-hydroxyoctanoate)/Bacterial Cellulose Composites. <i>Advanced Engineering Materials</i> , 2012 , 14, B330-B343	3.5	23	
711	Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 827-41	5.4	23	
710	Microstructure and chemical degradation of adobe and clay bricks. <i>Ceramics International</i> , 2009 , 35, 665	5-671	23	
709	Bioactivity of electro-thermally poled bioactive silicate glass. <i>Acta Biomaterialia</i> , 2009 , 5, 1274-83	10.8	23	
708	Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. <i>Materials & Design</i> , 2011 , 32, 3312-3319		23	
707	Microstructural and compositional characterisation of the pyrocarbon interlayer in SiC coated low density carbon/carbon composites. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 189-197	6	23	
706	Electrophoretic deposition infiltration of metallic fabrics with a boehmite sol for the preparation of ductile-phase-toughened ceramic composites. <i>Journal of Materials Science</i> , 1998 , 33, 933-938	4.3	23	
705	Activation energy for the mullitization of a diphasic gel obtained from fumed silica and boehmite sol. <i>Materials Letters</i> , 1999 , 38, 116-120	3.3	23	
704	Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. <i>International Materials Reviews</i> , 2020 , 1-30	16.1	23	
703	Cerium and gallium containing mesoporous bioactive glass nanoparticles for bone regeneration: Bioactivity, biocompatibility and antibacterial activity. <i>Materials Science and Engineering C</i> , 2021 , 124, 112050	8.3	23	
702	Ga and Ce ion-doped phosphate glass fibres with antibacterial properties and their composite for wound healing applications. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6981-6993	7.3	23	
701	Biofabrication of vessel-like structures with alginate di-aldehyde-gelatin (ADA-GEL) bioink. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 30, 8	4.5	23	
700	Bioactive glass based scaffolds coated with gelatin for the sustained release of icariin. <i>Bioactive Materials</i> , 2019 , 4, 1-7	16.7	23	
699	Dissolution of borate and borosilicate bioactive glasses and the influence of ion (Zn, Cu) doping in different solutions. <i>Journal of Non-Crystalline Solids</i> , 2018 , 502, 22-34	3.9	23	
698	Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating. <i>Ceramics International</i> , 2019 , 45, 14608-14613	5.1	22	
697	Electric Field-Assisted Orientation of Short Phosphate Glass Fibers on Stainless Steel for Biomedical Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 11529-11538	9.5	22	

696	Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 1313-1326	4.4	22
695	Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair 2018 , 175-204		22
694	Response of 45S5 Bioglass foams to tensile loading. <i>Ceramics International</i> , 2013 , 39, 8015-8020	5.1	22
693	Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating. <i>Biointerphases</i> , 2014 , 9, 041001	1.8	22
692	Initial Attatchment of rMSC and MG-63 Cells on Patterned Bioglass Substrates. <i>Advanced Engineering Materials</i> , 2012 , 14, B38-B44	3.5	22
691	Synthesis of solgel titania bactericide coatings on adobe brick. <i>Construction and Building Materials</i> , 2010 , 24, 384-389	6.7	22
690	Synthesis and Characterization of TiO2 Coated Multiwalled Carbon Nanotubes Using a Sol Gel Method. <i>Industrial & Description of TiO2 Chemistry Research</i> , 2008 , 47, 6598-6606	3.9	22
689	Hot-Pressed Glass Matrix Composites Containing Pyrochlore Phase Particles for Nuclear Waste Encapsulation. <i>Advanced Engineering Materials</i> , 2003 , 5, 501-508	3.5	22
688	Thermal Characterizations of silver-containing bioactive glass-coated Sutures. <i>Journal of Biomaterials Applications</i> , 2005 , 20, 81-98	2.9	22
687	Evaluation of hydrogel matrices for vessel bioplotting: Vascular cell growth and viability. <i>Journal of Biomedical Materials Research - Part A</i> , 2016 , 104, 577-585	5.4	22
686	Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. <i>Materials Science and Engineering C</i> , 2019 , 94, 1083-110) ^{8.3}	22
685	Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing. <i>Bioactive Materials</i> , 2021 , 6, 1479-1490	16.7	22
684	Bioact ve Glass-Polymer Nanocomposites for Bone T š sue Regeneration Applicat o ns: A Revew. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900287	3.5	21
683	Development of glass-ceramics from boron containing waste and meat bone ash combinations with addition of waste glass. <i>Ceramics International</i> , 2014 , 40, 6045-6051	5.1	21
682	Towards the synthesis of an Mg-containing silicate glassderamic to be used as a scaffold for cementum/alveolar bone regeneration. <i>Ceramics International</i> , 2014 , 40, 16287-16298	5.1	21
681	Ultrasonic elasticity determination of 45S5 Bioglass([])-based scaffolds: influence of polymer coating and crosslinking treatment. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 40, 85-94	4.1	21
680	Macromolecular interactions in alginategelatin hydrogels regulate the behavior of human fibroblasts. <i>Journal of Bioactive and Compatible Polymers</i> , 2017 , 32, 309-324	2	21
679	Synthesis and Characterization of Tissue Plasminogen Activator-Functionalized Superparamagnetic Iron Oxide Nanoparticles for Targeted Fibrin Clot Dissolution. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	21

(2018-2013)

678	Sterilization effects on the physical properties and cytotoxicity of poly(glycerol sebacate). <i>Materials Letters</i> , 2013 , 105, 32-35	3.3	21
677	Bioactive glass-based scaffolds for bone tissue engineering. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2012 , 126, 195-226	1.7	21
676	Carbon Nanotube Composite Scaffolds and Coatings for Tissue Engineering Applications. <i>Key Engineering Materials</i> , 2010 , 441, 31-52	0.4	21
675	TiO2 foams with poly-(d,l-lactic acid) (PDLLA) and PDLLA/Bioglass coatings for bone tissue engineering scaffolds. <i>Journal of Materials Science</i> , 2009 , 44, 1442-1448	4.3	21
674	Electrophoretic deposition infiltration of 2-D metal fibre-reinforced cordierite matrix composites of tubular shape. <i>Journal of Materials Science</i> , 2002 , 37, 4145-4153	4.3	21
673	Fabrication, Microstructural Characterisation and Mechanical Properties of Glass Compacts Containing Controlled Porosity of Spheroidal Shape. <i>Journal of Porous Materials</i> , 1999 , 6, 369-379	2.4	21
672	Novel Techniques for Manufacturing Woven Fiber Reinforced Ceramic Matrix Composites. I. Perform Fabrication. <i>Materials and Manufacturing Processes</i> , 1995 , 10, 1215-1226	4.1	21
671	Colloidal processing of a mullite matrix material suitable for infiltrating woven fibre preforms using electrophoretic deposition. <i>Journal of the European Ceramic Society</i> , 1996 , 16, 1319-1327	6	21
670	Fabrication of Cell-Loaded Two-Phase 3D Constructs for Tissue Engineering. <i>Materials</i> , 2016 , 9,	3.5	21
669	Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. <i>Materials Horizons</i> , 2021 , 8, 300-335	14.4	21
668	Bioactive coatings on porous titanium for biomedical applications. <i>Surface and Coatings Technology</i> , 2018 , 349, 584-592	4.4	21
667	Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers. <i>Biofabrication</i> , 2017 , 9, 025012	10.5	20
666	Curcumin-Containing Orthopedic Implant Coatings Deposited on Poly-Ether-Ether-Ketone/Bioactive Glass/Hexagonal Boron Nitride Layers by Electrophoretic Deposition. <i>Coatings</i> , 2019 , 9, 572	2.9	20
665	In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition. <i>Ceramics International</i> , 2019 , 45, 19148-19157	5.1	20
664	Characterisation of porcine dermis scaffolds decellularised using a novel non-enzymatic method for biomedical applications. <i>Journal of Biomaterials Applications</i> , 2015 , 30, 239-53	2.9	20
663	Osteogenic properties of manganese-doped mesoporous bioactive glass nanoparticles. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 1806-1815	5.4	20
662	Novel geopolymers incorporating red mud and waste glass cullet. <i>Materials Letters</i> , 2018 , 219, 152-154	3.3	20
661	Biodegradable nanostructures: Degradation process and biocompatibility of iron oxide nanostructured arrays. <i>Materials Science and Engineering C</i> , 2018 , 85, 203-213	8.3	20

660	Electrophoretic deposition of hydroxyapatite and hydroxyapatite liginate on rapid prototyped 3D Ti6Al4V scaffolds. <i>Journal of Materials Science</i> , 2016 , 51, 2338-2346	4.3	20
659	Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 182, 1103	46	20
658	Bioactive coating of zirconia toughened alumina ceramic implants improves cancellous osseointegration. <i>Scientific Reports</i> , 2019 , 9, 16692	4.9	20
657	Vascularisation for cardiac tissue engineering: the extracellular matrix. <i>Thrombosis and Haemostasis</i> , 2015 , 113, 532-47	7	20
656	Geopolymers from DC Plasmallreated Air Pollution Control Residues, Metakaolin, and Granulated Blast Furnace Slag. <i>Journal of Materials in Civil Engineering</i> , 2011 , 23, 735-740	3	20
655	Electrophoretic deposition and characterization of Eu2O3 nanocrystal@arbon nanotube heterostructures. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 1145-1150	6	20
654	Spherical calcium phosphate nanoparticle fillers allow polymer processing of bone fixation devices with high bioactivity. <i>Polymer Engineering and Science</i> , 2010 , 50, 952-960	2.3	20
653	Investigation of cyclic thermal shock behaviour of fibre reinforced glass matrix composites using non-destructive forced resonance technique. <i>Materials Science and Technology</i> , 1997 , 13, 852-858	1.5	20
652	Influence of Stress Concentrations on the Mechanical Property[porosity Correlation in Porous Materials. <i>Journal of Materials Science Letters</i> , 1998 , 17, 1273-1275		20
651	Electrophoretic co-deposition of diamond/borosilicate glass composite coatings. <i>Surface and Coatings Technology</i> , 2007 , 201, 7645-7651	4.4	20
650	Control of pore size by metallic fibres in glass matrix composite foams produced by microwave heating. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 3203-3208	6	20
649	Innovative manufacturing technique for glass matrix composites: extrusion of recycled TV set screen glass reinforced with Al2O3 platelets. <i>Journal of Materials Processing Technology</i> , 2003 , 142, 471	-478	20
648	Lead zirconate titanate films on metallic substrates by electrophoretic deposition. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 116, 208-214	3.1	20
647	Determining the fracture resistance of fibre-reinforced glass matrix composites by means of the chevron-notch flexural technique. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2001 , 308, 111-117	5.3	20
646	Anisotropic densification during sintering of glass powder compacts. <i>Journal of Materials Science Letters</i> , 1993 , 12, 943-945		20
645	Monodispersed lysozyme-functionalized bioactive glass nanoparticles with antibacterial and anticancer activities. <i>Biomedical Materials (Bristol)</i> , 2016 , 11, 035012	3.5	20
644	Production of a novel poly(e-caprolactone)-methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2021 , 109, 180-192	3.5	20
643	Soy protein meets bioactive glass: Electrospun composite fibers for tissue engineering applications. <i>Materials Letters</i> , 2017 , 199, 143-146	3.3	19

642	Evaluation of in vitro properties of 3D micro-macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 254	5 ⁶ 2558	3 ¹⁹
641	Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid <i>RSC Advances</i> , 2019 , 9, 18232-18244	3.7	19
640	Investigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass Scaffolds. <i>Tissue Engineering - Part A</i> , 2015 , 21, 2034-43	3.9	19
639	Cell-laden alginate dialdehyde-gelatin hydrogels formed in 3D printed sacrificial gel. <i>Journal of Materials Science: Materials in Medicine</i> , 2020 , 31, 31	4.5	19
638	In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions. <i>Journal of Materials Science</i> , 2018 , 53, 2362-2374	4.3	19
637	Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. <i>Biomedical Materials (Bristol)</i> , 2016 , 11, 065003	3.5	19
636	Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. <i>Biomedical Materials (Bristol)</i> , 2018 , 13, 065006	3.5	19
635	Toward Highly Dispersed Mesoporous Bioactive Glass Nanoparticles With High Cu Concentration Using Cu/Ascorbic Acid Complex as Precursor. <i>Frontiers in Chemistry</i> , 2019 , 7, 497	5	19
634	Bioglass /chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 4510-8	5.4	19
633	Electrophoretic deposition of selenium. <i>Materials Letters</i> , 2012 , 76, 177-180	3.3	19
632	Formation and in vitro biocompatibility of biomimetic hydroxyapatite coatings on chemically treated carbon substrates. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 193-203	5.4	19
631	Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: nanostructured surfaces and porosity. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 2982	<u>2-5</u> 2	19
630	Production of sintered materials from air pollution control residues from waste incineration. Journal of Materials Science, 2008 , 43, 4143-4151	4.3	19
629	A two-scale model for simultaneous sintering and crystallization of glass-ceramic scaffolds for tissue engineering. <i>Acta Biomaterialia</i> , 2008 , 4, 1095-103	10.8	19
628	Bioactive and mechanically strong Bioglass-poly(D,L-lactic acid) composite coatings on surgical sutures. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2006 , 76, 354-63	3.5	19
627	The influence of various additions on a glass-ceramic matrix composition based on industrial waste. <i>Ceramics International</i> , 2006 , 32, 115-119	5.1	19
626	Comment on Effective Elastic Moduli of Porous Ceramic Materials [] Journal of the American Ceramic Society, 1994 , 77, 2779-2781	3.8	19
625	Favorable angiogenic properties of the borosilicate bioactive glass 0106-B1 result in enhanced in vivo osteoid formation compared to 45S5 Bioglass. <i>Biomaterials Science</i> , 2019 , 7, 5161-5176	7.4	19

624	Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 43874-43886	9.5	19
623	New N-(2-carboxybenzyl)chitosan composite scaffolds containing nanoTiO2 or bioactive glass with enhanced cell proliferation for bone-tissue engineering applications. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2017 , 66, 71-81	3	18
622	Proving the role of boron in the structure of fly-ash/borosilicate glass based geopolymers. <i>Materials Letters</i> , 2017 , 200, 105-108	3.3	18
621	Enhancing biological activity of bioactive glass scaffolds by inorganic ion delivery for bone tissue engineering. <i>Current Opinion in Biomedical Engineering</i> , 2019 , 10, 23-34	4.4	18
620	4D Biofabrication of fibrous artificial nerve graft for neuron regeneration. <i>Biofabrication</i> , 2020 , 12, 0350	0 2 7.5	18
619	Co-deposition of CuO and Mn1.5Co1.5O4 powders on Crofer22APU by electrophoretic method: Structural, compositional modifications and corrosion properties. <i>Materials Letters</i> , 2018 , 218, 329-333	3.3	18
618	Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition. <i>Coatings</i> , 2018 , 8, 27	2.9	18
617	Surface Modification of SPIONs in PHBV Microspheres for Biomedical Applications. <i>Scientific Reports</i> , 2018 , 8, 7286	4.9	18
616	Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Low-Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation. <i>Macromolecular Bioscience</i> , 2019 , 19, e1900245	5.5	18
615	Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	18
614	Cytocompatibility, bioactivity and mechanical strength of calcium phosphate cement reinforced with multi-walled carbon nanotubes and bovine serum albumin. <i>Ceramics International</i> , 2013 , 39, 4975-4	1 9 83	18
613	Gelatin Coated 45S5 Bioglass [©] -Derived Scaffolds for Bone Tissue Engineering. <i>Key Engineering Materials</i> , 2013 , 541, 31-39	0.4	18
612	Incorporation of Calcium Containing Mesoporous (MCM-41-Type) Particles in Electrospun PCL Fibers by Using Benign Solvents. <i>Polymers</i> , 2017 , 9,	4.5	18
611	Poly-dl-lactic acid coated Bioglass scaffolds: toughening effects and osteosarcoma cell proliferation. <i>Journal of Materials Science</i> , 2012 , 47, 5661-5672	4.3	18
610	Electrophoretic deposition: fundamentals and applications. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 1501	3.4	18
609	In vitro antistaphylococcal effects of a novel 45S5 bioglass/agar-gelatin biocomposite films. <i>Journal of Applied Microbiology</i> , 2013 , 115, 604-12	4.7	18
608	The Development of Bioactive Glass-Ceramic Substrates with Biocide Activity. <i>Advanced Engineering Materials</i> , 2011 , 13, B462-B466	3.5	18
607	Surface characterization of glass fibers made from silicate waste: Zeta-potential and contact angle measurements. <i>Journal of Materials Science</i> , 2004 , 39, 401-412	4.3	18

(2015-2002)

606	Alumina ceramics based on seeded boehmite and electrophoretic deposition. <i>Ceramics International</i> , 2002 , 28, 893-897	5.1	18	
605	Toughening of Glass by a Piezoelectric Secondary Phase. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 180-182	3.8	18	
604	Reliability of the chevron notch technique for fracture toughness determination in glass composites reinforced by continuous fibres. <i>Scripta Materialia</i> , 2001 , 44, 531-537	5.6	18	
603	Processing and characterisation of 2-D woven metal fibre-reinforced multilayer silica matrix composites using electrophoretic deposition and pressure filtration. <i>Journal of the European Ceramic Society</i> , 1999 , 19, 2859-2866	6	18	
602	Comment on Breep-sintering of polycrystalline ceramic particulate composites <i>Journal of Materials Science Letters</i> , 1995 , 14, 1566-1567		18	
601	Processing ceramic-matrix composites using electrophoretic deposition. <i>Jom</i> , 1995 , 47, 34-37	2.1	18	
600	Anisotropic shrinkage of barium-magnesium aluminosilicate glass powder compacts during sintering. <i>Materials Letters</i> , 1995 , 24, 199-205	3.3	18	
599	Theoretical and experimental considerations on the thermal shock resistance of sintered glasses and ceramics using modelled microstructure-property correlations. <i>Journal of Materials Science</i> , 1996 , 31, 463-469	4.3	18	
598	Macro-mesoporous composites containing PEEK and mesoporous diopside as bone implants: characterization, in vitro mineralization, cytocompatibility, and vascularization potential and osteogenesis in vivo. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 8337-8352	7.3	18	
597	Primary osteoblasts, osteoblast precursor cells or osteoblast-like cell lines: Which human cell types are (most) suitable for characterizing 45S5-bioactive glass?. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 663-674	5.4	18	
596	Electrophoretic deposition of gelatine nanoparticle/chitosan coatings. <i>Electrochimica Acta</i> , 2019 , 307, 318-325	6.7	17	
595	Bi-layered porous constructs of PCL-coated 45S5 bioactive glass and electrospun collagen-PCL fibers. <i>Journal of Porous Materials</i> , 2015 , 22, 1215-1226	2.4	17	
594	Identifying key processing parameters for the electrospinning of aligned polymer nanofibers. <i>Materials Letters</i> , 2015 , 140, 99-102	3.3	17	
593	Electrophoretic Deposition of Copper(II)-Chitosan Complexes for Antibacterial Coatings. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	17	
592	Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds. <i>Tissue Engineering - Part A</i> , 2018 , 24, 1320-1331	3.9	17	
591	Mesoporous bioactive glass embedding propolis and cranberry antibiofilm compounds. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 1614-1625	5.4	17	
590	Role of ZnO additions on the Aphase relation in TCP based materials: Phase stability, properties, dissolution and biological response. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 1375-1385	6	17	
589	Advanced alginate-based hydrogels. <i>Materials Today</i> , 2015 , 18, 590-591	21.8	17	

Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste. Materials, 2014, 7, 5565-5580 17 588 A comparative study of oxygen diffusion in tissue engineering scaffolds. Journal of Materials 17 4.5 Science: Materials in Medicine, 2014, 25, 2573-8 The homopolymer poly(3-hydroxyoctanoate) as a matrix material for soft tissue engineering. 586 2.9 17 Journal of Applied Polymer Science, 2011, 122, 3606-3617 Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues. 585 12.8 17 Journal of Hazardous Materials, 2010, 173, 563-9 Characterisation of the bioactive behaviour of soldel hydroxyapatitel aO and 584 8.3 17 hydroxyapatite aoBioactive glass composites. Materials Science and Engineering C, 2010, 30, 497-502 Bioactive coatings by vaterite deposition on polymer substrates of different composition and 583 8.3 17 morphology. *Materials Science and Engineering C*, **2007**, 27, 741-745 582 Service life prediction for refractory materials. Journal of Materials Science, 2008, 43, 4079-4090 17 4.3 Densification and crystallisation behaviour of barium magnesium aluminosilicate glass powder 581 6 17 compacts. Journal of the European Ceramic Society, 1996, 16, 1237-1244 Alginate-based hydrogels show the same complex mechanical behavior as brain tissue. Journal of 580 4.1 17 the Mechanical Behavior of Biomedical Materials, 2020, 111, 103979 Influence of proteins on the corrosion behavior of a chitosan-bioactive glass coated magnesium 8.3 579 17 alloy. Materials Science and Engineering C, 2019, 100, 706-714 Bioactivation of titanium dioxide scaffolds by ALP-functionalization. Bioactive Materials, 2017, 2, 108-1156.7 578 16 Highly elastomeric poly(3-hydroxyoctanoate) based natural polymer composite for enhanced keratinocyte regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 16 577 2017, 66, 326-335 Bioactive Glass (BG) ICIE16 Shows Promising Osteogenic Properties Compared to Crystallized 6.3 16 576 45S5-BG. International Journal of Molecular Sciences, 2020, 21, Electrophoretic co-deposition of cellulose nanocrystals-45S5 bioactive glass nanocomposite 6.7 16 575 coatings on stainless steel. Applied Surface Science, 2016, 362, 323-328 Highly dispersed lithium doped mesoporous silica nanospheres regulating adhesion, proliferation, morphology, ALP activity and osteogenesis related gene expressions of BMSCs. Colloids and 6 16 574 Surfaces B: Biointerfaces, 2018, 170, 563-571 Tetracycline-encapsulated P(3HB) microsphere-coated 45S5 Bioglass([])-based scaffolds for bone 16 4.5 573 tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 2809-17 Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. Journal of 16 572 5.4 Biomedical Materials Research - Part A, 2017, 105, 590-600 Hydrogel films and microcapsules based on soy protein isolate combined with alginate. Journal of 2.9 16 Applied Polymer Science, 2017, 134,

(2009-2011)

The effect of interfacial bonding of calcium phosphate cements containing bio-mineralized multi-walled carbon nanotube and bovine serum albumin on the mechanical properties of calcium phosphate cements. <i>Ceramics International</i> , 2011 , 37, 2429-2435	5.1	16	
Quality Control and Thermal Shock Damage Characterization of High-Temperature Ceramics by Ultrasonic Pulse Velocity Testing. <i>International Journal of Applied Ceramic Technology</i> , 2007 , 4, 260-26	8 ²	16	
Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. <i>Journal of Materials Science: Materials in Medicine</i> , 2007 , 18, 2269-	73 ^{4.5}	16	
Electrophoretic deposition of ceramic coatings on ceramic composite substrates. <i>Advances in Applied Ceramics</i> , 2003 , 102, 99-102		16	
Tissue engineering using ceramics and polymers 2007 ,		16	
A pilot study investigating a novel subcutaneously implanted pre-cellularised scaffold for tissue engineering of intestinal mucosa. <i>European Cells and Materials</i> , 2006 , 11, 27-33; discussion 34	4.3	16	
Electrophoretic deposition of chondroitin sulfate-chitosan/bioactive glass composite coatings with multilayer design. <i>Surface and Coatings Technology</i> , 2017 , 315, 417-425	4.4	15	
Development and Characterization of Glass-Ceramics from Combinations of Slag, Fly Ash, and Glass Cullet without Adding Nucleating Agents. <i>Materials</i> , 2019 , 12,	3.5	15	
Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 135, 825-832	6	15	
Oxygen diffusion in marine-derived tissue engineering scaffolds. <i>Journal of Materials Science:</i> Materials in Medicine, 2015 , 26, 200	4.5	15	
Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces. <i>Materials and Design</i> , 2018 , 140, 452-459	8.1	15	
Novel Double-Layered Conduit Containing Highly Bioactive Glass Fibers for Potential Nerve Guide Application. <i>International Journal of Applied Glass Science</i> , 2016 , 7, 183-194	1.8	15	
Facile production of porous bioactive glass scaffolds by the foam replica technique combined with solgel/electrophoretic deposition. <i>Ceramics International</i> , 2016 , 42, 5772-5777	5.1	15	
Novel biomimetic fiber incorporated scaffolds for tissue engineering. <i>Journal of Biomedical Materials Research - Part A</i> , 2019 , 107, 2694-2705	5.4	15	
In Vitro Osteocompatibility and Enhanced Biocorrosion Resistance of Diammonium Hydrogen Phosphate-Pretreated/Poly(ether imide) Coatings on Magnesium for Orthopedic Application. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 29667-29680	9.5	15	
45S5 bioactive glass coatings by atmospheric plasma spraying obtained from feedstocks prepared by different routes. <i>Journal of Materials Science</i> , 2014 , 49, 7933-7942	4.3	15	
Electrophoretic Codeposition of La0.6Sr0.4Co0.8Fe0.2O3land Carbon Nanotubes for Developing Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. <i>International Journal of Applied Ceramic Technology</i> , 2010 , 7, 30-40	2	15	
Characterisation of carbon nanotubes in the context of toxicity studies. <i>Environmental Health</i> , 2009 , 8 Suppl 1, S3	6	15	
	multi-walled carbon nanotube and bovine serum albumin on the mechanical properties of calcium phosphate cements. <i>Ceramics International</i> , 2011, 37, 2429-2435. Quality Control and Thermal Shock Damage Characterization of High-Temperature Ceramics by Ultrasonic Pulse Velocity Testing. <i>International Journal of Applied Ceramic Technology</i> , 2007, 4, 260-26. Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. <i>Journal of Materials Science: Materials in Medicine</i> , 2007, 18, 2269-Electrophoretic deposition of ceramic coatings on ceramic composite substrates. <i>Advances in Applied Ceramics</i> , 2003, 102, 99-102. Tissue engineering using ceramics and polymers 2007, A pilot study investigating a novel subcutaneously implanted pre-cellularised scaffold for tissue engineering of intestinal murcosa. <i>European Cells and Materials</i> , 2006, 11, 27-33; discussion 34. Electrophoretic deposition of chondroitin sulfate-chitosan/bioactive glass composite coatings with multilayer design. <i>Surface and Coatings Technology</i> , 2017, 315, 417-425. Development and Characterization of Glass-Ceramics from Combinations of Slag, Fly Ash, and Glass Cullet without Adding Nucleating Agents. <i>Materials</i> , 2019, 12, Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015, 135, 825-832. Oxygen diffusion in marine-derived tissue engineering scaffolds. <i>Journal of Materials Science: Materials in Medicine</i> , 2015, 26, 200 Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces. <i>Materials and Design</i> , 2018, 140, 452-459 Novel Double-Layered Conduit Containing Highly Bioactive Class Fibers for Potential Nerve Guide Application. <i>International Journal of Applied Glass Science</i> , 2016, 7, 183-194 Facile production of porous bioactive glass scaffolds by the foam replica technique combined with solljel/electrophoretic deposition. <i>Ceramics International</i> , 2016, 42	multi-walled carbon nanotube and bovine serum albumin on the mechanical properties of calcium phosphate cements. Ceramics International, 2011, 37, 2429-2435 Quality Control and Thermal Shock Damage Characterization of High-Temperature Ceramics by Ultrasonic Pulse Velocity Testing. International Journal of Applied Ceramic Technology, 2007, 4, 260-268 Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. Journal of Materials Science: Materials in Medicine, 2007, 18, 2269-73 ⁴⁻⁵ Electrophoretic deposition of ceramic coatings on ceramic composite substrates. Advances in Applied Ceramics, 2003, 102, 99-102 Tissue engineering using ceramics and polymers 2007, A pilot study investigating a novel subcutaneously implanted pre-cellularised scaffold for tissue engineering of intestinal mucosa. European Cells and Materials, 2006, 11, 27-33, discussion 34 4-3 Electrophoretic deposition of chondroitin sulfate-chitosan/bioactive glass composite coatings with multilayer design. Surface and Coatings Technology, 2017, 315, 417-425 Development and Characterization of Glass-Ceramics from Combinations of Slag, Fly Ash, and Glass Cullet without Adding Nucleating Agents. Materials, 2019, 12, Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability. Colloids and Surfaces B. Biointerfaces, 2015, 135, 825-832 Oxygen diffusion in marine-derived tissue engineering scaffolds. Journal of Materials Science: Application. International Journal of Applied Glass Science, 2015, 139, 149, 149, 149, 149, 149, 149, 149, 14	multi-walled carbon nanotube and bovine serum albumin on the mechanical properties of calcium phosphate cements. Ceramics International, 2011, 37, 2429-2435 Quality Control and Thermal Shock Damage Characterization of High-Temperature Ceramics by Ultrasonic Pulse Velocity Testing. International Journal of Applied Ceramic Technology, 2007, 4, 260-268 2 16 Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. Journal of Materials Science: Materials in Medicine, 2007, 18, 2269-73 ⁴⁵ 16 Electrophoretic deposition of ceramic coatings on ceramic composite substrates. Advances in Applied Ceramics, 2003, 102, 99-102 Tissue engineering using ceramics and polymers 2007, 166 Apilot study investigating a novel subcutaneously implanted pre-cellularised scaffold for tissue engineering of intestinal mucosa. European Cells and Materials, 2006, 11, 27-33; discussion 34 4 15 Electrophoretic deposition of chondrolitin sulfate-chitosan/bioactive glass composite coatings with multilayer design. Surface and Coatings Technology, 2017, 315, 417-425 Development and Characterization of Class-Ceramics from Combinations of Slag, Fly Ash, and Glass 2 15 Development and Characterization of Class-Ceramics from Combinations of Slag, Fly Ash, and Glass 3 15 Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability. Colloids and Surfaces B. Biointerfaces, 2015, 135, 825-832 8 Oxygen diffusion in marine-derived tissue engineering scaffolds. Journal of Materials and Design, 2 15 Altitude technology, 2015, 26, 200 4 15 Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces. Materials and Design, 2 15 Altitude technology of Done marrow stromal cells on modified Ti-Nb surfaces. Materials and Design, 2 15 Altitude technology 1 15, 26, 200 5 15 Novel Double-Layered Conduit Containing Highly Bioactive Glass Fibers for Potential Nerve Guide Application. International Journal of Applied Glass Science

552	The Electrophoretic Deposition of Bioglass [] /Carbon Nanotube composite layers for bioactive coatings. <i>International Journal of Materials and Product Technology</i> , 2009 , 35, 260	1	15
551	Development and healing of matrix microcracks in fibre reinforced glass matrix composites: assessment by internal friction. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1998 , 241, 141-150	5.3	15
550	Mechanical Properties and Impact Resistance of a New Transparent Glass-Ceramic. <i>Advanced Engineering Materials</i> , 2007 , 9, 191-196	3.5	15
549	Novel basalt fibre reinforced glass matrix composites. <i>Journal of Materials Science</i> , 2006 , 41, 1207-1211	4.3	15
548	Bioactivity of degradable polymer sutures coated with bioactive glass. <i>Journal of Materials Science: Materials in Medicine</i> , 2004 , 15, 893-9	4.5	15
547	Optomechanical glass matrix composites. <i>Composites Science and Technology</i> , 2003 , 63, 779-783	8.6	15
546	Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells. <i>Nanomedicine</i> , 2016 , 11, 1093-105	5.6	15
545	Phosphate glass fibres with therapeutic ions release capability he review. <i>Advances in Applied Ceramics</i> , 2020 , 119, 1-14	2.3	15
544	Multi-targeted B and Co co-doped 45S5 bioactive glasses with angiogenic potential for bone regeneration. <i>Materials Science and Engineering C</i> , 2020 , 112, 110909	8.3	15
543	In-vitro study of the bioactivity and cytotoxicity response of Ti surfaces modified by Nb and Mo diffusion treatments. <i>Surface and Coatings Technology</i> , 2018 , 335, 148-158	4.4	15
542	Bone tissue scaffolds based on antimicrobial SiO2Na2OAl2O3CaOB2O3 glass. <i>Journal of Non-Crystalline Solids</i> , 2016 , 432, 73-80	3.9	14
54 ¹	Studies on Cell Compatibility, Antibacterial Behavior, and Zeta Potential of Ag-Containing Polydopamine-Coated Bioactive Glass-Ceramic. <i>Materials</i> , 2019 , 12,	3.5	14
540	Incorporation of Boron in Mesoporous Bioactive Glass Nanoparticles Reduces Inflammatory Response and Delays Osteogenic Differentiation. <i>Particle and Particle Systems Characterization</i> , 2020 , 37, 2000054	3.1	14
539	Bovine Serum Albumin (BSA)/polyacrylonitrile (PAN) biohybrid nanofibers coated with a biomineralized calcium deficient hydroxyapatite (HA) shell for wound dressing. <i>Materials Science and Engineering C</i> , 2020 , 116, 111248	8.3	14
538	Cytotoxicity, chemical stability, and surface properties of ferroelectric ceramics for biomaterials. Journal of the American Ceramic Society, 2018 , 101, 440-449	3.8	14
537	Mechanical reinforcement of Bioglass -based scaffolds by novel polyvinyl-alcohol/microfibrillated cellulose composite coating. <i>Materials Letters</i> , 2014 , 118, 204-207	3.3	14
536	A New Calcium Releasing Nano-composite Biomaterial for Bone Tissue Engineering Scaffolds. <i>Procedia Engineering</i> , 2013 , 59, 78-84		14
535	The influence of reagent stoichiometry on the yield and aspect ratio of acid-oxidised injection CVD-grown multi-walled carbon nanotubes. <i>Carbon</i> , 2012 , 50, 3967-3976	10.4	14

534	Collagen/silica nanocomposites and hybrids for bone tissue engineering. <i>Nanotechnology Reviews</i> , 2013 , 2, 427-447	6.3	14
533	Alternative Uses of Waste Glasses: Issues on the Fabrication of Metal Fibre Reinforced Glass Matrix Composites. <i>Applied Composite Materials</i> , 1998 , 5, 207-222	2	14
532	Thermal aging behavior of an SiC-fiber reinforced glass matrix composite in a non-oxidizing atmosphere. <i>Materials Chemistry and Physics</i> , 1998 , 53, 155-164	4.4	14
531	Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering. <i>Biomedical Materials (Bristol)</i> , 2008 , 3, 025009	3.5	14
530	Glass Composite Materials for Nuclear and Hazardous Waste Immobilisation. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1107, 1		14
529	Encapsulated gadolinium zirconate pyrochlore particles in soda borosilicate glass as novel radioactive waste form. <i>Ceramics International</i> , 2007 , 33, 1231-1235	5.1	14
528	Computational Simulations for the Assessment of the Mechanical Properties of Glass with Controlled Porosity. <i>Journal of Porous Materials</i> , 2003 , 10, 189-200	2.4	14
527	Colloidal processing of complex shape stainless steel woven fiber mat reinforced alumina ceramic matrix composites using electrophoretic deposition. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1465	-1467	14
526	Shrinkage anisotropy of glass powder compacts sintered in dilatometers. <i>Journal of Materials Research</i> , 1998 , 13, 1693-1697	2.5	14
525	3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO-CaO nanoparticles for bone tissue engineering. <i>Materials Science and Engineering C</i> , 2021 , 131, 112470	8.3	14
524	Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair. <i>Acta Biomaterialia</i> , 2020 , 118, 113-128	10.8	14
523	High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels. <i>Journal of Biomedical Materials Research - Part A</i> , 2016 , 104, 1194-201	5.4	14
522	Acellular Bioactivity of Sol-Gel Derived Borate Glass-Polycaprolactone Electrospun Scaffolds. <i>Biomedical Glasses</i> , 2016 , 2,	2.7	14
521	Encapsulation of Rat Bone Marrow Derived Mesenchymal Stem Cells in Alginate Dialdehyde/Gelatin Microbeads with and without Nanoscaled Bioactive Glass for In Vivo Bone Tissue Engineering. <i>Materials</i> , 2018 , 11,	3.5	14
520	Soy protein isolate/bioactive glass composite membranes: Processing and properties. <i>European Polymer Journal</i> , 2018 , 106, 232-241	5.2	14
519	Assessment of in vitro testing approaches for bioactive inorganic materials. <i>Journal of Non-Crystalline Solids</i> , 2016 , 432, 53-59	3.9	13
518	Electrophoretic deposition of anisotropic Fe 2 O 3 /PVP/chitosan nanocomposites for biomedical applications. <i>Materials Letters</i> , 2017 , 200, 83-86	3.3	13
517	Development of novel zirconia implant's materials gradated design with improved bioactive surface. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2019 , 94, 110-125	4.1	13

516	Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel. <i>Materials Science and Engineering C</i> , 2020 , 115, 111062	8.3	13
515	Preconditioning of Bioactive Glasses before Introduction to Static Cell Culture: What Is Really Necessary?. <i>Methods and Protocols</i> , 2020 , 3,	2.5	13
514	Gallium- and Cerium-Doped Phosphate Glasses with Antibacterial Properties for Medical Applications. <i>Advanced Engineering Materials</i> , 2020 , 22, 1901577	3.5	13
513	Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. <i>Biomedical Materials (Bristol)</i> , 2020 , 15, 065002	3.5	13
512	Multilayered drug delivery coatings composed of daidzein-loaded PHBV microspheres embedded in a biodegradable polymer matrix by electrophoretic deposition. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 5035-5045	7.3	13
511	3D Microcontact Printing for Combined Chemical and Topographical Patterning on Porous Cell Culture Membrane. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 22857-22865	9.5	13
510	Reepithelialization in focus: Non-invasive monitoring of epidermal wound healing in vitro. <i>Biosensors and Bioelectronics</i> , 2019 , 142, 111555	11.8	13
509	Waste derived glass ceramic composites prepared by low temperature sintering/sinter-crystallisation. <i>Advances in Applied Ceramics</i> , 2015 , 114, S17-S25	2.3	13
508	Evaluation of the antibacterial effects of vancomycin hydrochloride released from agar-gelatin-bioactive glass composites. <i>Biomedical Materials (Bristol)</i> , 2015 , 10, 015011	3.5	13
507	Surface functionalization of Bioglass with alkaline phosphatase. <i>Surface and Coatings Technology</i> , 2015 , 264, 132-139	4.4	13
506	Biocompatibility of submicron Bioglass powders obtained by a top-down approach. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2014 , 102, 952-61	3.5	13
505	Preparation and characterization of Bioglass -based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 3379-3387	6	13
504	Oxidation and thermal degradation resistance of silicon carbide coated low density carbonflarbon composite. <i>Advances in Applied Ceramics</i> , 2013 , 112, 23-32	2.3	13
503	Characterization of Nanostructured Ceramic and Cermet Coatings Deposited by Plasma Spraying. <i>International Journal of Applied Ceramic Technology</i> , 2011 , 8, 1136-1146	2	13
502	Infiltration of a 3-D Fabric for the Production of SiC/SiC Composites by Means of Electrophoretic Deposition. <i>Key Engineering Materials</i> , 2009 , 412, 237-242	0.4	13
501	Fabrication of woven metal fibre reinforced glass matrix composites. <i>Applied Composite Materials</i> , 1997 , 4, 145-155	2	13
500	Predicting the Thermal Shock Resistance of Fiber Reinforced Brittle Matrix Composites. <i>Scripta Materialia</i> , 1998 , 38, 1211-1217	5.6	13
499	Carbon nanotubeBiO2 composites by colloidal processing. <i>Advances in Applied Ceramics</i> , 2008 , 107, 155-158	2.3	13

498	Use of numerical approaches to predict mechanical properties of brittle bodies containing controlled porosity. <i>Journal of Materials Science</i> , 2004 , 39, 4335-4337	4.3	13	
497	Fabrication of Stainless-Steel-Fiber-Reinforced Cordierite-Matrix Composites of Tubular Shape Using Electrophoretic Deposition. <i>Journal of the American Ceramic Society</i> , 2002 , 85, 2575-2577	3.8	13	
496	A simple approach for determining the in situ fracture toughness of ceramic platelets used in composite materials by numerical simulations. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1889-1891		13	
495	Assessment of brittleness in glass-ceramics and particulate glass matrix composites by indentation data. <i>Journal of Materials Science Letters</i> , 1996 , 15, 1119-1121		13	
494	Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glass coatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblast-like cells. <i>Materials Science and Engineering C</i> , 2020 , 109, 110492	8.3	13	
493	In vitro evaluation of poly (vinyl alcohol)/collagen blended hydrogels for regulating human periodontal ligament fibroblasts and gingival fibroblasts. <i>International Journal of Biological Macromolecules</i> , 2020 , 163, 1938-1946	7.9	13	
492	Investigation of the batch-to-batch inconsistencies of Collagen in PCL-Collagen nanofibers. <i>Materials Science and Engineering C</i> , 2019 , 95, 217-225	8.3	13	
491	Hydroxyapatite/sodium alginate coatings electrophoretically deposited on titanium substrates: microstructure and properties. <i>Applied Surface Science</i> , 2021 , 540, 148353	6.7	13	
490	Structural characterization and evaluation of antibacterial and angiogenic potential of gallium-containing melt-derived and gel-derived glasses from CaO-SiO2 system. <i>Ceramics International</i> , 2018 , 44, 22698-22709	5.1	13	
489	Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering. <i>Materials and Design</i> , 2021 , 208, 1098	8 ¹	13	
488	Sol-gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. <i>Journal of Biomaterials Applications</i> , 2016 , 30, 740-9	2.9	12	
487	Pressureless spark plasmalintered Bioglass [] 45S5 with enhanced mechanical properties and stressInduced new phase formation. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 2727-2736	6	12	
486	Electrophoretic deposition of zein coatings 2017 , 14, 683-689		12	
485	Development and Characterization of Bioactive Glass Containing Composite Coatings with Ion Releasing Function for Antibiotic-Free Antibacterial Surgical Sutures. <i>Materials</i> , 2019 , 12,	3.5	12	
484	Solution Precursor Plasma Spraying (SPPS): A novel and simple process to obtain bioactive glass coatings. <i>Materials Letters</i> , 2018 , 223, 198-202	3.3	12	
483	Interaction of HEPES buffer with glass-ceramic scaffold: Can HEPES replace TRIS in SBF?. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2018 , 106, 143-152	3.5	12	
482	Nanotube array-based barium titanateBobalt ferrite composite film for affordable magnetoelectric multiferroics. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10066-10072	7.1	12	
481	Novel porous Al2O3-SiO2-TiO2 bone grafting materials: formation and characterization. <i>Journal of Biomaterials Applications</i> , 2014 , 28, 813-24	2.9	12	

480	Processing of porous glass ceramics from highly crystallisable industrial wastes. <i>Advances in Applied Ceramics</i> , 2015 , 114, S11-S16	2.3	12
479	Additive manufacturing of cell-loaded alginate enriched with alkaline phosphatase for bone tissue engineering application. <i>BioNanoMaterials</i> , 2014 , 15,		12
478	Poly(glycerol sebacate)Poly(butylene succinate-dilinoleate) Blends as Candidate Materials for Cardiac Tissue Engineering. <i>Macromolecular Symposia</i> , 2013 , 334, 57-67	0.8	12
477	Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents. <i>Bioinspired, Biomimetic and Nanobiomaterials</i> , 2013 , 2, 141-153	1.3	12
476	Thermal analysis and in vitro bioactivity of bioactive glass lumina composites. <i>Materials Characterization</i> , 2011 , 62, 118-129	3.9	12
475	Production of pulverised fuel ash tiles using conventional ceramic production processes. <i>Advances in Applied Ceramics</i> , 2009 , 108, 44-49	2.3	12
474	Matrix-assisted pulsed laser evaporation of poly(D,L-lactide) for biomedical applications: effect of near infrared radiation. <i>Journal of Biomedical Optics</i> , 2008 , 13, 014028	3.5	12
473	Effect of borate addition on the sintered properties of pulverised fuel ash. <i>Ceramics International</i> , 2007 , 33, 993-999	5.1	12
472	A Glassteramic Derived from High TiO2-Containing Slag: Microstructural Development and Mechanical Behavior. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 2426-2433	3.8	12
471	Mechanical performance and fracture behaviour of glassEhatrix composites reinforced with molybdenum particles. <i>Composites Science and Technology</i> , 2005 , 65, 1276-1283	8.6	12
470	On the toughening mechanisms of SiC platelet-reinforced Al2O3/Y-TZP nano-ceramic matrix composites. <i>Ceramics International</i> , 1999 , 25, 359-366	5.1	12
469	A new approach to the effective viscosity of suspensions. <i>Journal of Materials Science</i> , 1996 , 31, 2515-25	5 4 .3	12
468	Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. <i>Advanced Science</i> , 2021 , e2102678	13.6	12
467	Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. <i>Journal of Biomedical Materials Research - Part A</i> , 2021 , 109, 1457-1467	5.4	12
466	Comparison of Hydrogels for the Development of Well-Defined 3D Cancer Models of Breast Cancer and Melanoma. <i>Cancers</i> , 2020 , 12,	6.6	12
465	Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 5530	2.6	12
464	Influences of mesoporous magnesium silicate on the hydrophilicity, degradability, mineralization and primary cell response to a wheat protein based biocomposite. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 6428-6436	7.3	12
463	Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media. <i>Biomedical Glasses</i> , 2019 , 5, 124-139	2.7	12

(2006-2021)

462	In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 114, 104164	4.1	12
461	Biofabrication of vessel grafts based on natural hydrogels. <i>Current Opinion in Biomedical Engineering</i> , 2017 , 2, 83-89	4.4	11
460	Zoledronic acid impregnated and poly (L -lactic acid) coated 45S5 Bioglass -based scaffolds. <i>Materials Letters</i> , 2015 , 156, 180-182	3.3	11
459	Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application. <i>Data in Brief</i> , 2015 , 4, 524-8	1.2	11
458	Understanding Bioactive Glass Powder Suspensions for Electrophoretic Deposition of Bioactive Glass-Polymer Coatings. <i>Journal of the Electrochemical Society</i> , 2015 , 162, D3077-D3083	3.9	11
457	PEEK Based Biocompatible Coatings Incorporating h-BN and Bioactive Glass by Electrophoretic Deposition. <i>ECS Transactions</i> , 2018 , 82, 89-95	1	11
456	Biomedical Applications of Polyhydroxyalkanoates 2016 , 337-383		11
455	Characterization of polyetheretherketone particle suspensions for electrophoretic deposition. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	11
454	Micro-Computed-Tomography-Guided Analysis of In Vitro Structural Modifications in Two Types of 45S5 Bioactive Glass Based Scaffolds. <i>Materials</i> , 2017 , 10,	3.5	11
453	Structure optimisation and biological evaluation of bone scaffolds prepared by co-sintering of silicate and phosphate glasses. <i>Advances in Applied Ceramics</i> , 2015 , 114, S48-S55	2.3	11
452	Electrophoretic Deposition of PEEK-TiO2 Composite Coatings on Stainless Steel. <i>Key Engineering Materials</i> , 2012 , 507, 127-133	0.4	11
451	Microstructure characterization of erosion resistant coatings on carbon-bonded carbon fibre composites. <i>Journal of Microscopy</i> , 2010 , 237, 288-91	1.9	11
450	Microstructural characterisation and electrical properties of multiwalled carbon nanotubes/glass-ceramic nanocomposites. <i>Journal of Materials Chemistry</i> , 2010 , 20, 308-313		11
449	Matrix Assisted Pulsed Laser Evaporation (MAPLE) of Poly(D,L lactide) (PDLLA) on Three Dimensional Bioglass Structures. <i>Advanced Engineering Materials</i> , 2009 , 11, 685-689	3.5	11
448	Microporous glass ceramics from combination of silicate, borate and phosphate wastes. <i>Advances in Applied Ceramics</i> , 2012 , 111, 415-421	2.3	11
447	Carbon Nanotube-Reinforced Hydroxyapatite Coatings on Metallic Implants Using Electrophoretic Deposition. <i>Key Engineering Materials</i> , 2009 , 412, 93-97	0.4	11
446	The effect of the particle size and the morphology of alumina powders on the processing of green bodies by electrophoretic deposition. <i>Journal of Materials Processing Technology</i> , 2010 , 210, 96-103	5.3	11
445	Mechanical properties of oxide-fiber reinforced glass matrix composites with BN or SnO2 interfaces. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 417, 341-347	5.3	11

444	Study of the connectivity properties of Bioglass -filled polylactide foam scaffolds by image analysis and impedance spectroscopy. <i>Acta Biomaterialia</i> , 2005 , 1, 565-74	10.8	11
443	Joining of SiC fibre reinforced borosilicate glass matrix composites to molybdenum by metal and silicate brazing. <i>Journal of Materials Science</i> , 2005 , 40, 3693-3701	4.3	11
442	Sol-gel coatings incorporating borosilicate bioactive glass enhance anti corrosive and surface performance of stainless steel implants. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 876, 114735	4.1	11
441	Poly(hydroxyalkanoate)s meet benign solvents for electrospinning. <i>Materials Letters</i> , 2020 , 278, 12838	93.3	11
440	Review: Silicon oxycarbide based materials for biomedical applications. <i>Applied Materials Today</i> , 2020 , 18, 100482	6.6	11
439	Cell laden alginate-keratin based composite microcapsules containing bioactive glass for tissue engineering applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 185	4.5	11
438	Dosage and composition of bioactive glasses differentially regulate angiogenic and osteogenic response of human MSCs. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 2827-2837	5.4	11
437	Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	11
436	45S5 bioactive glass reactivity by dynamic vapour sorption. <i>Journal of Non-Crystalline Solids</i> , 2016 , 432, 47-52	3.9	10
435	Nitride, Zirconia, Alumina, and Carbide Coatings on Ti6Al4V Femoral Heads: Effect of Deposition Techniques on Mechanical and Tribological Properties . <i>Advanced Engineering Materials</i> , 2017 , 19, 1700	177	10
434	Electrospun Filaments Embedding Bioactive Glass Particles with Ion Release and Enhanced Mineralization. <i>Nanomaterials</i> , 2019 , 9,	5.4	10
433	Hybrid particles derived from alendronate and bioactive glass for treatment of osteoporotic bone defects. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 796-808	7.3	10
432	Mechanical improvement of calcium carbonate cements by in situ HEMA polymerization during hardening. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 3403-3411	7.3	10
43 ¹	Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. <i>Journal of Materials Science: Materials in Medicine</i> , 2020 , 31, 43	4.5	10
430	In silico design of magnesium implants: Macroscopic modeling. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 79, 181-188	4.1	10
429	Mesoporous silica submicron particles (MCM-41) incorporating nanoscale Ag: synthesis, characterization and application as drug delivery coatings. <i>Journal of Porous Materials</i> , 2019 , 26, 443-45	3 ^{2.4}	10
428	Combination of electrophoretic deposition and microwave-ignited combustion synthesis for the preparation of ceramic coated intermetallic-based materials. <i>Surface and Coatings Technology</i> , 2012 , 206, 3240-3249	4.4	10
427	Development and Characterization of PEEK/B2O3-Doped 45S5 Bioactive Glass Composite Coatings Obtained by Electrophoretic Deposition. <i>Key Engineering Materials</i> , 2015 , 654, 165-169	0.4	10

426	Development of new sol-gel derived Ag-doped biomaterials for dental applications. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1417, 48		10
425	Nanocomposite Elastomeric Biomaterials for Myocardial Tissue Engineering Using Embryonic Stem Cell-derived Cardiomyocytes. <i>Advanced Engineering Materials</i> , 2010 , 12, B664-B674	3.5	10
424	Pressureless sintering and characterization of Al2O3-platelet-reinforced barium-magnesium aluminosilicate glass-ceramic composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 1997 , 28, 505-510	8.4	10
423	Inhibition of calcification of polymerBeramic composites incorporating nanocrystalline TiO2. <i>Advances in Applied Ceramics</i> , 2008 , 107, 287-292	2.3	10
422	Isotropic shrinkage of platelet containing glass powder compacts during isothermal sintering. <i>Solid State Sciences</i> , 2001 , 3, 101-106		10
421	Enhanced bacteriostatic activity, osteogenesis and osseointegration of silicon nitride/polyetherketoneketone composites with femtosecond laser induced micro/nano structural surface. <i>Applied Materials Today</i> , 2020 , 18, 100523	6.6	10
420	Effect of benign solvents composition on poly(Etaprolactone) electrospun fiber properties. <i>Materials Letters</i> , 2019 , 245, 86-89	3.3	10
419	Electrophoretic deposition of ferulic acid loaded bioactive glass/chitosan as antibacterial and bioactive composite coatings. <i>Surface and Coatings Technology</i> , 2021 , 405, 126657	4.4	10
418	A biomimetic approach for enhancing adhesion and osteogenic differentiation of adipose-derived stem cells on poly(butylene succinate) composites with bioactive ceramics and glasses. <i>European Polymer Journal</i> , 2017 , 87, 159-173	5.2	9
417	Porous bioactive glass microspheres prepared by flame synthesis process. <i>Materials Letters</i> , 2019 , 256, 126625	3.3	9
416	Nanocomposite coatings obtained by electrophoretic co-deposition of poly(etheretherketone)/graphene oxide suspensions. <i>Journal of Materials Science</i> , 2020 , 55, 8881-8899	4.3	9
415	Zein-Based Electrospun Fibers Containing Bioactive Glass with Antibacterial Capabilities. <i>Macromolecular Bioscience</i> , 2020 , 20, e2000059	5.5	9
414	Optimization of cell seeding on electrospun PCL-silk fibroin scaffolds. <i>European Polymer Journal</i> , 2020 , 134, 109838	5.2	9
413	Electrophoretic Deposition and Characterization of Functional Coatings Based on an Antibacterial Gallium (III)-Chitosan Complex. <i>Coatings</i> , 2020 , 10, 483	2.9	9
412	Modulation of neuronal cell affinity of composite scaffolds based on polyhydroxyalkanoates and bioactive glasses. <i>Biomedical Materials (Bristol)</i> , 2020 , 15, 045024	3.5	9
411	Polycaprolactone Electrospun Fiber Mats Prepared Using Benign Solvents: Blending with Copper(II)-Chitosan Increases the Secretion of Vascular Endothelial Growth Factor in a Bone Marrow Stromal Cell Line. <i>Macromolecular Bioscience</i> , 2020 , 20, e1900355	5.5	9
410	Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: Microstructural and electrical characterization. <i>Journal of Power Sources</i> , 2020 , 455, 227910	8.9	9
409	Bottom-Up Assembly of Silica and Bioactive Glass Supraparticles with Tunable Hierarchical Porosity. <i>Langmuir</i> , 2018 , 34, 2063-2072	4	9

408	Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model. <i>FASEB Journal</i> , 2018 , 32, 5587-5601	0.9	9
407	Induction of VEGF secretion from bone marrow stromal cell line (ST-2) by the dissolution products of mesoporous silica glass particles containing CuO and SrO. <i>Journal of Non-Crystalline Solids</i> , 2018 , 500, 217-224	3.9	9
406	Bioactive glasses and glass-ceramics versus hydroxyapatite: Comparison of angiogenic potential and biological responsiveness. <i>Journal of Biomedical Materials Research - Part A</i> , 2019 , 107, 2601-2609	5.4	9
405	Electrophoretic Deposition and Characterization of Chitosan/45S5 Bioactive Glass Composite Coatings on Porous Titanium for Biomedical Applications. <i>Key Engineering Materials</i> , 2015 , 654, 189-194	0.4	9
404	Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering applications. Journal of Applied Polymer Science, 2012 , 123, 398-408	2.9	9
403	Functional properties of glassBeramic composites containing industrial inorganic waste and evaluation of their biological compatibility. <i>Ceramics International</i> , 2013 , 39, 8007-8014	5.1	9
402	Electrophoretic Deposition of Fe2O3/Chitosan Nanocomposite Coatings for Functional and Biomedical Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 10149-55	1.3	9
401	Novel poly(hydroxyalkanoates)-based composites containing Bioglass í and calcium sulfate for bone tissue engineering. <i>Biomedical Materials (Bristol)</i> , 2012 , 7, 054105	3.5	9
400	Novel sintered glass-ceramics from vitrified oil well drill cuttings. <i>Journal of Materials Science</i> , 2009 , 44, 4296-4302	4.3	9
399	Predicting the electrical conductivity of two-phase composite materials. <i>Scripta Materialia</i> , 1997 , 36, 1195-1200	5.6	9
398	Anisotropic shrinkage during sintering of glass-powder compacts under uniaxial stresses: Qualitative assessment of experimental evidence. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1997 , 28, 2397-2404	2.3	9
397	Hot-pressed phosphate glassderamic matrix composites containing calcium phosphate particles for nuclear waste encapsulation. <i>Journal of Materials Science</i> , 2008 , 43, 4152-4156	4.3	9
396	Dispersion-Reinforced Glass and Glass-Ceramic Matrix Composites 2005 , 485-509		9
395	Prolonged maintenance of neointestine using subcutaneously implanted tubular scaffolds in a rat model. <i>Transplantation Proceedings</i> , 2006 , 38, 3097-9	1.1	9
394	Unique microstructure of glass-metal composites obtained by microwave assisted heat-treatments. Journal of Thermal Analysis and Calorimetry, 2003 , 72, 1141-1149	4.1	9
393	Bioglass coated poly(DL-lactide) foams for tissue engineering scaffolds. <i>Materialwissenschaft Und Werkstofftechnik</i> , 2003 , 34, 654-661	0.9	9
392	Wetting of bioactive glass surfaces by poly(Hydroxyacid) melts: interaction between Bioglass and biodegradable polymers. <i>E-Polymers</i> , 2005 , 5,	2.7	9
391	Production of Glass-Ceramics from Coal Ash and Waste Glass Mixtures. <i>Key Engineering Materials</i> , 2001 , 206-213, 2049-2052	0.4	9

390	Mullite fabrication from fumed silica and boehmite sol precursors. <i>Materials Letters</i> , 1996 , 29, 171-176	3.3	9
389	Modification of in vitro degradation behavior of pure iron with ultrasonication treatment: Comparison of two different pseudo-physiological solutions. <i>Materials Science and Engineering C</i> , 2019 , 95, 275-285	8.3	9
388	Potential of Laponite incorporated oxidized alginate-gelatin (ADA-GEL) composite hydrogels for extrusion-based 3D printing. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2021 , 109, 1090-1104	3.5	9
387	Soy Protein-Based Composite Hydrogels: Physico-Chemical Characterization and In Vitro Cytocompatibility. <i>Polymers</i> , 2018 , 10,	4.5	9
386	Preparation and characterization of 45S5 bioactive glass-based scaffolds loaded with PHBV microspheres with daidzein release function. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 1765-1774	5.4	8
385	Iron surface functionalization system - Iron oxide nanostructured arrays with polycaprolactone coatings: Biodegradation, cytocompatibility, and drug release behavior. <i>Applied Surface Science</i> , 2019 , 492, 669-682	6.7	8
384	Bilayered bioactive glass scaffolds incorporating fibrous morphology by flock technology. <i>Materials Letters</i> , 2015 , 158, 313-316	3.3	8
383	Study of the Electrophoretic Deposition of Chitosan/Halloysite Nanotubes/Titanium Dioxide Composite Coatings Using Taguchi Experimental Design Approach. <i>Key Engineering Materials</i> , 2015 , 654, 230-239	0.4	8
382	A New Generation of Electrospun Fibers Containing Bioactive Glass Particles for Wound Healing. <i>Materials</i> , 2020 , 13,	3.5	8
381	Formation of Zein/Bioactive Glass Layers Using Electrophoretic Deposition Technique. <i>ECS Transactions</i> , 2018 , 82, 73-80	1	8
380	Dynamic mechanical characterization of poly(glycerol sebacate)/poly(butylene succinate-butylene dilinoleate) blends for cardiac tissue engineering by flat punch nanoindentation. <i>Materials Letters</i> , 2018 , 221, 115-118	3.3	8
379	Is quercetin an alternative natural crosslinking agent to genipin for long-term dermal scaffolds implantation?. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, e1716-e1724	4.4	8
378	Electrophoretic Deposition of PEEK/45S5 Bioactive Glass Coating on Porous Titanium Substrate: Influence of Processing Conditions and Porosity Parameters. <i>Key Engineering Materials</i> , 2016 , 704, 343-	3S 0	8
377	Silver-containing bioactive glasses for tissue engineering applications 2014 , 177-211		8
376	TiO2PLLA nanocomposite coatings and free-standing films by a combined electrophoretic deposition-dip coating process. <i>Composites Part B: Engineering</i> , 2014 , 67, 256-261	10	8
375	Biodegradable poly(glycerol sebacate)/poly(3-hydroxybutyrate)-TiO2 nanocomposites: fabrication and characterisation. <i>Materials Science and Technology</i> , 2014 , 30, 574-581	1.5	8
374	Encapsulation of aluminium in geopolymers produced from metakaolin. <i>Journal of Nuclear Materials</i> , 2014 , 447, 208-214	3.3	8
373	Bottom Ash-Based Geopolymer Materials: Mechanical and Environmental Properties. <i>Ceramic Engineering and Science Proceedings</i> , 2011 , 71-82	0.1	8

372	Using electrophoretic deposition to identify protein charge in biological medium. <i>Journal of Applied Electrochemistry</i> , 2011 , 41, 919-923	2.6	8
371	Fabrication of a novel poly(3-hydroxyoctanoate) / nanoscale bioactive glass composite film with potential as a multifunctional wound dressing 2010 ,		8
370	Microstructure and Creep Behavior of a Si3N4BiC Micronanocomposite. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 439-444	3.8	8
369	Bioactive glass and glass-ceramic scaffolds for bone tissue engineering 2011 , 107-128		8
368	Tensile behavior and cyclic creep of continuous fiber-reinforced glass matrix composites at room and elevated temperatures. <i>Journal of Materials Engineering and Performance</i> , 1997 , 6, 344-348	1.6	8
367	Examination of microhardness indentation-induced subsurface damage in alumina platelet reinforced borosilicate glass using confocal scanning laser microscopy. <i>Journal of Microscopy</i> , 1997 , 186, 35-40	1.9	8
366	Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study. <i>Mineralogical Magazine</i> , 2008 , 72, 515-519	1.7	8
365	Glass ceramics of high hardness and fracture toughness developed from steel fly ash. <i>Materials Science and Technology</i> , 2006 , 22, 1148-1154	1.5	8
364	Biodegradable and Bioactive Polymer/Bioglass Composite Foams for Tissue Engineering Scaffolds. <i>Materials Science Forum</i> , 2005 , 494, 499-506	0.4	8
363	Determination of the Young's modulus of platelet reinforced composite materials. <i>Materials Science & Microstructure and Processing</i> , 1996 , 207, 228-233	5.3	8
362	The Multibarriers-System as a Materials Science Approach for Industrial Waste Disposal and Recycling: Application of Gradient and Multilayered Microstructures. <i>Environmental Technology (United Kingdom)</i> , 1996 , 17, 1193-1203	2.6	8
361	Chitosan/bioactive glass coatings as a protective layer against corrosion of nanocrystalline titanium under simulated inflammation. <i>Materials Letters</i> , 2020 , 264, 127284	3.3	8
360	Fabrication and Characterization of Cinnamaldehyde-Loaded Mesoporous Bioactive Glass Nanoparticles/PHBV-Based Microspheres for Preventing Bacterial Infection and Promoting Bone Tissue Regeneration. <i>Polymers</i> , 2021 , 13,	4.5	8
359	Mn-Co spinel coatings on Crofer 22 APU by electrophoretic deposition: Up scaling, performance in SOFC stack at 850 °C and compositional modifications. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 4496-4504	6	8
358	Immunomodulatory bioactive glasses for tissue regeneration. <i>Acta Biomaterialia</i> , 2021 , 133, 168-186	10.8	8
357	Morphological and mechanical characterization of chitosan/gelatin/silica-gentamicin/bioactive glass coatings on orthopaedic metallic implant materials. <i>Thin Solid Films</i> , 2021 , 732, 138780	2.2	8
356	Investigating the effect of salicylate salt in enhancing the corrosion resistance of AZ91 magnesium alloy for biomedical applications. <i>BioNanoMaterials</i> , 2016 , 17,		7
355	Systematically Designed Periodic Electrophoretic Deposition for Decorating 3D Carbon-Based Scaffolds with Bioactive Nanoparticles. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 4393-4404	5.5	7

(2002-2019)

Mixtures. Materials, 2019, 12,	3.5	7
Microstructural and in vitro characterization of 45S5 bioactive glass coatings deposited by solution precursor plasma spraying (SPPS). <i>Surface and Coatings Technology</i> , 2019 , 371, 151-160	4.4	7
Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positive-replica. <i>Journal of Biomedical Materials Research - Part A</i> , 2019 , 107, 1455-1465	5.4	7
Top-down Processing of Submicron 45S5 Bioglass for Enhanced in Vitro Bioactivity and Biocompatibility. <i>Procedia Engineering</i> , 2015 , 102, 534-541		7
Preparation and characterization of fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 224	4.5	7
Effect of Cu- and Zn-Doped Bioactive Glasses on the In Vitro Bioactivity, Mechanical and Degradation Behavior of Biodegradable PDLLA Scaffolds. <i>Materials</i> , 2020 , 13,	3.5	7
Do bioresorbable polyesters have antimicrobial properties?. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 18	4.5	7
Pulse electrodeposition and characterization of non-continuous, multi-element-doped hydroxyapatite bioceramic coatings. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 555-566	2.6	7
Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering 2016 , 325-356		7
Fabrication and characterization of zeinBioactive glass scaffolds. <i>Bioinspired, Biomimetic and Nanobiomaterials</i> , 2015 , 4, 73-78	1.3	7
Tailoring elastic properties of PLGA/TiO2 biomaterials. <i>Computational Materials Science</i> , 2012 , 61, 283-2	2862	7
Electrophoretic Deposition of Carbon Nanotubes (CNTs) and CNT/Nanoparticle Composites. <i>Nanostructure Science and Technology</i> , 2012 , 157-179	0.9	7
Development of ZrO2 interfaces for all-oxide composites. <i>Composites Science and Technology</i> , 2012 , 72, 197-203	8.6	7
Improvement of the microstructure and mechanical properties of bioceramic scaffolds using electrohydrodynamic spraying with template modification. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2010 , 3, 230-9	4.1	7
Novel bioassay to evaluate biocompatibility of bioactive glass scaffolds for tissue engineering. <i>Advances in Applied Ceramics</i> , 2008 , 107, 274-276	2.3	7
Sintering and crystallisation of vanadium doped CaOØrO2BiO2 glass-ceramics. <i>Materials Letters</i> , 2006 , 60, 1607-1612	3.3	7
Bioglass ^[] Coatings on Superelastic NiTi Wires by Electrophoretic Deposition (EPD). <i>Key Engineering Materials</i> , 2006 , 314, 219-224	0.4	7
Heating microscopy study of the sintering behaviour of glass powder compacts in the binary system SiO2IIiO2. <i>Materials Letters</i> , 2002 , 56, 317-321	3.3	7
	Microstructural and in vitro characterization of 45S5 bioactive glass coatings deposited by solution precursor plasma spraying (SPPS). Surface and Coatings Technology, 2019, 371, 151-160 Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positive-replica. Journal of Biomedical Materials Research - Part A, 2019, 107, 1455-1465 Top-down Processing of Submicron 45S5 Bioglass. For Enhanced in Vitro Bioactivity and Biocompatibility. Procedia Engineering, 2015, 102, 534-541 Preparation and characterization of Fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration. Journal of Materials Science: Materials in Medicine, 2015, 26, 224 Effect of Cu- and Zn-Doped Bioactive Glasses on the In Vitro Bioactivity, Mechanical and Degradation Behavior of Biodegradable PDLLA Scaffolds. Materials, 2020, 13, Do bioresorbable polyesters have antimicrobial properties?. Journal of Materials Science: Materials in Medicine, 2018, 29, 18 Pulse electrodeposition and characterization of non-continuous, multi-element-doped hydroxyapatite bioceramic coatings. Journal of Solid State Electrochemistry, 2018, 22, 555-566 Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering 2016, 325-356 Fabrication and characterization of zeinBioactive glass scaffolds. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 73-78 Tailoring elastic properties of PLGA/TiO2 biomaterials. Computational Materials Science, 2012, 61, 283-271, 197-203 Electrophoretic Deposition of Carbon Nanotubes (CNTs) and CNT/Nanoparticle Composites. Nanostructure Science and Technology, 2012, 157-179 Development of Ero2 interfaces for all-oxide composites. Composites Science and Technology, 2012, 172, 197-203 Improvement of the microstructure and mechanical properties of bioceramic scaffolds using electrohydrodynamic spraying with template modification. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 230-9 Novel bioassay to evaluate biocompatibility o	Microstructural and in vitro characterization of 4555 bioactive glass coatings deposited by solution precursor plasma spraying (SPPS). Surface and Coatings Technology, 2019, 371, 151-160 Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positive-replica. Journal of Biomedical Materials Research - Part A, 2019, 107, 1455-1465 Top-down Processing of Submicron 4555 Bioglass of Enhanced in Vitro Bioactivity and Biocompatibility. Procedia Engineering, 2015, 102, 534-541 Preparation and characterization of Fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration. Journal of Materials Science: Materials in Medicine, 2015, 26, 224 Effect of Cu- and Zn-Doped Bioactive Glasses on the In Vitro Bioactivity, Mechanical and Degradation Behavior of Biodegradable PDLLA Scaffolds. Materials, 2020, 13, Do bioresorbable polyesters have antimicrobial properties?. Journal of Materials Science: Materials in Medicine, 2018, 29, 18 Pulse electrodeposition and characterization of non-continuous, multi-element-doped hydroxyapatite bioceramic coatings. Journal of Solid State Electrochemistry, 2018, 22, 555-566 Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering 2016, 325-356 Eabrication and characterization of zeindioactive glass scaffolds. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 73-78 Tailoring elastic properties of PLGA/TiO2 biomaterials. Computational Materials Science, 2012, 61, 283-286 Electrophoretic Deposition of Carbon Nanotubes (CNTs) and CNT/Nanoparticle Composites. Nanostructure Science and Technology, 2012, 157-179 Development of ZrO2 interfaces for all-oxide composites. Composites Science and Technology, 2012, 157-179 Development of the microstructure and mechanical properties of bioceramic scaffolds using electrohydrodynamic spraying with template modification. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 230-9 Novel bioassay to evaluate biocompatibility of bioactive glas

336	Creep and densification during anisotropic sintering of glass powders. <i>Journal of Materials Science</i> , 1995 , 30, 5652-5656	4.3	7
335	Zur Viskositīl von Glasschmelzen und porlēn Sintergllērn. <i>Materialwissenschaft Und</i> <i>Werkstofftechnik</i> , 1995 , 26, 263-268	0.9	7
334	Creep and creep-fatigue behaviour of continuous fibre reinforced glass-ceramic matrix Composites. <i>Materialwissenschaft Und Werkstofftechnik</i> , 1995 , 26, 368-373	0.9	7
333	Alginate and Gelatine Blending for Bone Cell Printing and Biofabrication 2013,		7
332	Biomaterials Produced via Green Electrospinning 2017 , 149-168		7
331	In Vitro Differentiation and In Vivo Mineralization of Osteogenic Cells Derived from Human Embryonic Stem Cells. <i>Tissue Engineering</i> , 2004 , 10, 1518-1525		7
330	In Vivo Validation of Spray-Dried Mesoporous Bioactive Glass Microspheres Acting as Prolonged Local Release Systems for BMP-2 to Support Bone Regeneration. <i>Pharmaceutics</i> , 2020 , 12,	6.4	7
329	Ionic dissolution products of Cerium-doped bioactive glass nanoparticles promote cellular osteogenic differentiation and extracellular matrix formation of human bone marrow derived mesenchymal stromal cells. <i>Biomedical Materials (Bristol)</i> , 2020 ,	3.5	7
328	Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds. <i>Applied Materials Today</i> , 2021 , 22, 100923	6.6	7
327	Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Produce Distinct Neural 3D In Vitro Models Depending on Alginate/Gellan Gum/Laminin Hydrogel Blend Properties. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100131	10.1	7
326	Hemp Fiber Reinforced Red Mud/Fly Ash Geopolymer Composite Materials: Effect of Fiber Content on Mechanical Strength. <i>Materials</i> , 2021 , 14,	3.5	7
325	Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels. <i>Biomaterials Science</i> , 2021 , 9, 3051-3068	7.4	7
324	Multifunctional stratified composite coatings by electrophoretic deposition and RF co-sputtering for orthopaedic implants. <i>Journal of Materials Science</i> , 2021 , 56, 7920-7935	4.3	7
323	Sol-gel template synthesis of BaTiO3 films with nano-periodic structures. <i>Materials Letters</i> , 2018 , 227, 120-123	3.3	7
322	Engineering the surface functionality of 45S5 bioactive glass-based scaffolds by the heterogeneous nucleation and growth of silver particles. <i>Journal of Materials Science</i> , 2017 , 52, 9082-9090	4.3	6
321	Cell specificity of magnetic cell seeding approach to hydrogel colonization. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 2948-2957	5.4	6
320	Apatite Forming Ability and Dissolution Behavior of Boron- and Calcium-Modified Silicon Oxycarbides in Comparison to Silicate Bioactive Glass. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 5337-5347	5.5	6
319	Novel approach for the assessment of ovarian follicles infiltration in polymeric electrospun patterned scaffolds. <i>PLoS ONE</i> , 2019 , 14, e0215985	3.7	6

(2003-2020)

318	Effects of Medium pH and Preconditioning Treatment on Protein Adsorption on 45S5 Bioactive Glass Surfaces. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000420	4.6	6
317	New insights into the crystallization process of sol-gelderived 45S5 bioactive glass. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 4234-4247	3.8	6
316	Electrophoretic Deposition of Lawsone Loaded Nanoscale Silicate Glass /Chitosan Composite on PEEK/BG Layers. <i>ECS Transactions</i> , 2018 , 82, 45-50	1	6
315	Taguchi Design of Experiments Approach to Determine Process Parameter for the Electrophoretic Deposition of Chitosan/Bioactive Glass on Mg Alloy Substrates. <i>ECS Transactions</i> , 2018 , 82, 81-87	1	6
314	Preparation and characterization of mesoporous calcium-doped silica-coated TiO2 scaffolds and their drug releasing behavior. <i>International Journal of Applied Ceramic Technology</i> , 2018 , 15, 892-902	2	6
313	Evaluation of cell inkjet printing technique for biofabrication. <i>BioNanoMaterials</i> , 2016 , 17,		6
312	Development of Novel Mesoporous Silica-Based Bioactive Glass Scaffolds with Drug Delivery Capabilities. <i>Advances in Science and Technology</i> , 2014 , 96, 54-60	0.1	6
311	Strengthening mechanism of PDLLA coated titania foam. <i>Mechanics of Materials</i> , 2014 , 69, 35-40	3.3	6
310	Sol-gel derived bioactive glass ceramics for dental applications 2013 , 194-231		6
309	45S5 Bioglass concentrations modulate the release of vancomycin hydrochloride from gelatin tarch films: evaluation of antibacterial and cytotoxic effects. <i>Journal of Materials Science</i> , 2017 , 52, 9091-9102	4.3	6
308	Influence of dissolution products of a novel Ca-enriched silicate bioactive glass-ceramic on VEGF release from bone marrow stromal cells. <i>Biomedical Glasses</i> , 2017 , 3,	2.7	6
307	Effect of hybrid polymer coating of Bioglass foams on mechanical response during tensile loading. <i>Advances in Applied Ceramics</i> , 2015 , 114, S63-S69	2.3	6
306	Characterisation of vascularisation of scaffolds for tissue engineering. <i>Materials Science and Technology</i> , 2015 , 31, 180-187	1.5	6
305	Optically-transparent oxide fibre-reinforced glass matrix composites. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2591-2597	3.9	6
304	Viscous-Phase Silicate Processing 2012 , 75-144		6
303	Biodegradable and bioactive polymer/ceramic composite scaffolds 2007 , 72-92		6
302	Continuous Fibre Reinforced Glass and Glass-Ceramic Matrix Composites 2005 , 461-484		6
301	Third-Generation Gene-Activating Biomaterials. <i>Materials Science Forum</i> , 2003 , 426-432, 179-184	0.4	6

300	Effect of thermomechanical loads on microstructural damage and on the resulting thermomechanical behaviour of silicon carbide fibre-reinforced glass matrix composites. <i>Materials Characterization</i> , 2005 , 54, 75-83	3.9	6
299	Thermal Shock Resistance of Cordierite-Mullite Refractory Composites. <i>Key Engineering Materials</i> , 2005 , 290, 260-263	0.4	6
298	Synthesis and characterization of rubidium-containing bioactive glass nanoparticles. <i>Materials Letters</i> , 2020 , 273, 127920	3.3	6
297	Silibinin releasing mesoporous bioactive glass nanoparticles with potential for breast cancer therapy. <i>Ceramics International</i> , 2020 , 46, 29111-29119	5.1	6
296	Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications. <i>Molecules</i> , 2020 , 25,	4.8	6
295	Electrospun PCL Fiber Mats Incorporating Multi-Targeted B and Co Co-Doped Bioactive Glass Nanoparticles for Angiogenesis. <i>Materials</i> , 2020 , 13,	3.5	6
294	Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels. <i>Biomedicines</i> , 2021 , 9,	4.8	6
293	Biomimetic biohybrid nanofibers containing bovine serum albumin as a bioactive moiety for wound dressing. <i>Materials Science and Engineering C</i> , 2021 , 123, 111965	8.3	6
292	Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. <i>Additive Manufacturing</i> , 2021 , 40, 101895-101895	6.1	6
291	Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterization. <i>Materials</i> , 2021 , 14,	3.5	6
2 90	Electrophoretically deposited high molecular weight chitosan/bioactive glass composite coatings on WE43 magnesium alloy. <i>Surface and Coatings Technology</i> , 2021 , 418, 127232	4.4	6
289	Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution. <i>Materials</i> , 2019 , 12,	3.5	6
288	Bioprinted 3D calcium phosphate scaffolds with gentamicin releasing capability. <i>Ceramics International</i> , 2019 , 45, 7090-7094	5.1	6
287	Manuka Honey and Zein Coatings Impart Bioactive Glass Bone Tissue Scaffolds Antibacterial Properties and Superior Mechanical Properties. <i>Frontiers in Materials</i> , 2021 , 7,	4	6
286	Alginate Utilization in Tissue Engineering and Cell Therapy. <i>Springer Series in Biomaterials Science and Engineering</i> , 2018 , 121-155	0.6	6
285	Development of a novel hybrid bioactive hydrogel for future clinical applications. <i>Journal of Biomaterials Applications</i> , 2018 , 33, 447-465	2.9	6
284	Advanced ADA-GEL bioink for bioprinted artificial cancer models. <i>Bioprinting</i> , 2021 , 23, e00145	7	6
283	Fracture Toughness and Work of Fracture of SiC-Fibre Reinforced Glass Matrix Composite 2002 , 203-21	2	6

(2004-2021)

282	Bioactive glasses incorporating less-common ions to improve biological and physical properties Journal of Materials Science: Materials in Medicine, 2021 , 33, 3	4.5	6
281	Effect of Ca and B incorporation into silicon oxycarbide on its microstructure and phase composition. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 7645-7655	3.8	5
280	Bioactive glass coating using aerosol deposition. <i>Ceramics International</i> , 2019 , 45, 14728-14732	5.1	5
279	Bioactive behavior of mesoporous silica particle (MCM-41) coated bioactive 'glass-based scaffolds. <i>International Journal of Applied Ceramic Technology</i> , 2019 , 16, 1753-1761	2	5
278	Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites. <i>Materials</i> , 2020 , 13,	3.5	5
277	Cell Interactions with Size-Controlled Colloidal Monolayers: Toward Improved Coatings in Bone Tissue Engineering. <i>Langmuir</i> , 2020 , 36, 1793-1803	4	5
276	Microporous Organic-Inorganic Nanocomposite Coatings on Stainless Steel via Electrophoretic Deposition for Biomedical Applications. <i>ECS Transactions</i> , 2018 , 82, 25-31	1	5
275	A model of the mechanical degradation of foam replicated scaffolds. <i>Journal of Materials Science</i> , 2016 , 51, 3824-3835	4.3	5
274	Multiferroic nanocomposite fabrication via liquid phase using anodic alumina template. <i>Science and Technology of Advanced Materials</i> , 2018 , 19, 535-542	7.1	5
273	Porous Biomaterials and Scaffolds for Tissue Engineering 2019 , 188-202		5
272	Influence of functionalized halloysite clays (HNT) on selected properties of multiblock (e)PBS-EG copolymer obtained by enzymatic catalysis. <i>Designed Monomers and Polymers</i> , 2015 , 18, 501-511	2 4	5
		3.1	
271	Nanotechnologies in tissue engineering. <i>Nanotechnology Reviews</i> , 2013 , 2, 411-425	6.3	5
271	Nanotechnologies in tissue engineering. <i>Nanotechnology Reviews</i> , 2013 , 2, 411-425 Processing and Characterization of Biocompatible Titania Coatings by Electrophoretic Deposition. <i>Key Engineering Materials</i> , 2009 , 412, 189-194		5
	Processing and Characterization of Biocompatible Titania Coatings by Electrophoretic Deposition.	6.3	
270	Processing and Characterization of Biocompatible Titania Coatings by Electrophoretic Deposition. Key Engineering Materials, 2009, 412, 189-194 The Influence of Tetracycline Loading on the Surface Morphology and Biocompatibility of Films	6.3	5
270	Processing and Characterization of Biocompatible Titania Coatings by Electrophoretic Deposition. <i>Key Engineering Materials</i> , 2009 , 412, 189-194 The Influence of Tetracycline Loading on the Surface Morphology and Biocompatibility of Films Made from P(3HB) Microspheres. <i>Advanced Engineering Materials</i> , 2010 , 12, B260-B268 Crack resistance curve in glass matrix composite reinforced by long Nicalon fibres. <i>Journal of</i>	6.3 0.4 3.5	5
270 269 268	Processing and Characterization of Biocompatible Titania Coatings by Electrophoretic Deposition. <i>Key Engineering Materials</i> , 2009 , 412, 189-194 The Influence of Tetracycline Loading on the Surface Morphology and Biocompatibility of Films Made from P(3HB) Microspheres. <i>Advanced Engineering Materials</i> , 2010 , 12, B260-B268 Crack resistance curve in glass matrix composite reinforced by long Nicalon fibres. <i>Journal of Materials Science</i> , 2008 , 43, 4022-4030 Thermal shock behaviour of mullitedordierite refractory materials. <i>Advances in Applied Ceramics</i> ,	6.3 0.4 3.5 4.3	5 5 5

264	Processing and characterisation of model optomechanical composites in the system sapphire fibre/borosilicate glass matrix. <i>Journal of Materials Processing Technology</i> , 2005 , 169, 270-280	5.3	5
263	Incorporation of porosity to control the residual thermal stresses in ceramic composites and laminates. <i>EPJ Applied Physics</i> , 1998 , 2, 197-202	1.1	5
262	Viscosity of porous sintered glasses. <i>Journal of Materials Science</i> , 1995 , 30, 5663-5666	4.3	5
261	Erhflung der Thermoschockbestfldigkeit von Sinterglas und Keramik Ber das Verbundwerkstoffkonzept. <i>Materialwissenschaft Und Werkstofftechnik</i> , 1993 , 24, 450-456	0.9	5
260	3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu-Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering <i>Small</i> , 2022 , e2104996	11	5
259	Silicate-based nanoceramics in regenerative medicine 2020 , 255-273		5
258	Borate and Silicate Bioactive Glass Coatings Prepared by Nanosecond Pulsed Laser Deposition. <i>Coatings</i> , 2020 , 10, 1105	2.9	5
257	Biofabrication and Characterization of Alginate Dialdehyde-Gelatin Microcapsules Incorporating Bioactive Glass for Cell Delivery Application. <i>Macromolecular Bioscience</i> , 2020 , 20, e2000138	5.5	5
256	Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition. <i>Materials Letters</i> , 2021 , 286, 129229	3.3	5
255	Essential oils in biomedical applications: Recent progress and future opportunities. <i>Current Opinion in Biomedical Engineering</i> , 2021 , 17, 100261	4.4	5
254	Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 647007	5.8	5
253	Facile Preparative Access to Bioactive Silicon Oxycarbides with Tunable Porosity. <i>Materials</i> , 2019 , 12,	3.5	5
252	Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393. <i>Connective Tissue Research</i> , 2019 , 60, 344-357	3.3	5
251	The Effect of Electrophoretic Deposition Parameters on the Microstructure and Adhesion of Zein Coatings to Titanium Substrates. <i>Materials</i> , 2021 , 14,	3.5	5
250	Fabrication of Quasi-2D Shape-Tailored Microparticles using Wettability Contrast-Based Platforms. <i>Advanced Materials</i> , 2021 , 33, e2007695	24	5
249	Gelatin coating increases in vivo bone formation capacity of three-dimensional 45S5 bioactive glass-based crystalline scaffolds. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2019 , 13, 179-	-190	5
248	Biomaterials. <i>Learning Materials in Biosciences</i> , 2018 , 91-105	0.3	5
247	Ag containing polydopamine coating on a melt-derived bioactive glass-ceramic: Effect on surface reactivity. <i>Ceramics International</i> , 2018 , 44, 16083-16087	5.1	5

246	Composites Containing Bioactive Glass121-138		5	
245	Setting behavior and bioactivity assessment of calcium carbonate cements. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 6980-6990	3.8	4	
244	Stratified Scaffolds for Osteochondral Tissue Engineering. <i>Methods in Molecular Biology</i> , 2015 , 1340, 191-200	1.4	4	
243	14-3-3[protein-loaded 3D hydrogels favor osteogenesis. <i>Journal of Materials Science: Materials in Medicine</i> , 2020 , 31, 105	4.5	4	
242	Layered scaffolds for periodontal regeneration 2017 , 279-295		4	
241	Bioactive Glass-Biopolymer Multilayer Coatings Fabricated by Electrophoretic Deposition Combined with Layer-by-Layer Assembly. <i>Key Engineering Materials</i> , 2015 , 654, 170-175	0.4	4	
240	Structural and Biological Characterization of Scaffolds 2013 , 299-310		4	
239	Carbon nanotube (CNT) reinforced glass and glass-ceramic matrix composites 2013 , 208-256		4	
238	Three-dimensional reconstruction of a nickel- alumina composite coating by FIB-SIMS. <i>Surface and Interface Analysis</i> , 2011 , 43, 492-494	1.5	4	
237	Glass-Ceramic Tiles Prepared by Pressing and Sintering DC Plasma-Vitrified Air Pollution Control Residues. <i>International Journal of Applied Ceramic Technology</i> , 2010 , 7, 925-934	2	4	
236	The pO-Index and R Ratio Gap Methods for the Assessment of Corrosion Risk in Refractory Materials in Contact with Glass Melts. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1355	3.8	4	
235	Nanoscale Bioactive Silicate Glasses in Biomedical Applications 2010 ,		4	
234	Crack growth in glass matrix composite reinforced by long SiC fibres. <i>Theoretical and Applied Fracture Mechanics</i> , 2008 , 49, 158-170	3.7	4	
233	Bioglass Coatings on Biodegradable Poly(3-hydroxybutyrate) (P3HB) Meshes for Tissue Engineering Scaffolds. <i>Materialwissenschaft Und Werkstofftechnik</i> , 2006 , 37, 577-583	0.9	4	
232	Use of heating microscopy to assess sintering anisotropy in layered glass metal powder compacts. <i>Advances in Applied Ceramics</i> , 2006 , 105, 232-240	2.3	4	
231	Characterisation of WetIpolymer surfaces for tissue engineering applications: Are flat surfaces a suitable model for complex structures?. <i>E-Polymers</i> , 2005 , 5,	2.7	4	
230	Sintering of metal fibre reinforced glass matrix composites using microwave radiation. <i>Advances in Applied Ceramics</i> , 2005 , 104, 49-54	2.3	4	
229	Fabrication of mullite ceramics by rotary forging and pressureless sintering. <i>Journal of the European Ceramic Society</i> , 1999 , 19, 2613-2618	6	4	

228	Anti-inflammatory and antibacterial activities of cerium-containing mesoporous bioactive glass nanoparticles for drug-free biomedical applications. <i>Materials Today Bio</i> , 2021 , 12, 100150	9.9	4
227	The Quantitative Microstructure-Property Correlations of Composite and Porous Materials: An Engineering Tool for Designing New Materials. <i>Solid Mechanics and Its Applications</i> , 1995 , 27-38	0.4	4
226	Nanofiber composites in bone tissue engineering 2017 , 301-323		4
225	Interaction of MOPS buffer with glass-ceramic scaffold: Effect of (PO) ions in SBF on kinetics and morphology of formatted hydroxyapatite. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2020 , 108, 1888-1896	3.5	4
224	Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	4
223	Integration of Mesoporous Bioactive Glass Nanoparticles and Curcumin into PHBV Microspheres as Biocompatible Composite for Drug Delivery Applications. <i>Molecules</i> , 2021 , 26,	4.8	4
222	Bioactive nanocomposites for dental application obtained by reactive suspension method. <i>Nanocomposites</i> , 2016 , 2, 37-49	3.4	4
221	Numerical simulation of electrospinning process in commercial and in-house software PAK. <i>Materials Research Express</i> , 2019 , 6, 025305	1.7	4
220	Phosphate glass fibers facilitate proliferation and osteogenesis through Runx2 transcription in murine osteoblastic cells. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 316-326	5.4	4
219	Sponge-derived natural bioactive glass microspheres with self-assembled surface channel arrays opening into a hollow core for bone tissue and controlled drug release applications. <i>Chemical Engineering Journal</i> , 2021 , 407, 126667	14.7	4
218	Crystallization study of solgel derived 13-93 bioactive glass powder. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 1695-1706	6	4
217	Differential Responses to Bioink-Induced Oxidative Stress in Endothelial Cells and Fibroblasts. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	4
216	Manganese-Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C. <i>Materials</i> , 2021 , 14,	3.5	4
215	Deposition of bioactive gelatin coatings on porous titanium: Influence of processing parameters, size and pore morphology. <i>Surface and Coatings Technology</i> , 2021 , 421, 127366	4.4	4
214	Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review <i>Dental Materials</i> , 2022 ,	5.7	4
213	Electrophoretic Co-Deposition of Chitosan and Graphene Oxide Results in Antibacterial Coatings for Medical Applications. <i>Key Engineering Materials</i> , 2015 , 654, 176-182	0.4	3
212	Glass-Ceramic Composites from Borosilicate Glass and Alumina-Rich Residues. <i>International Journal of Applied Ceramic Technology</i> , 2015 , 12, E19-E27	2	3
211	A Structural Comparison of Ordered and Non-Ordered Ion Doped Silicate Bioactive Glasses. <i>Materials</i> , 2020 , 13,	3.5	3

(2004-2020)

210	Preparation and Characterization of Electrospun Blend Fibrous Polyethylene Oxide:Polycaprolactone Scaffolds to Promote Cartilage Regeneration. <i>Advanced Engineering Materials</i> , 2020 , 22, 2000131	3.5	3
209	Biodegradabiliy of spherical mesoporous silica particles (MCM-41) in simulated body fluid (SBF). <i>American Mineralogist</i> , 2018 , 103, 350-354	2.9	3
208	Bioactive glass foams for tissue engineering applications 2014 , 191-212		3
207	Multifunctional scaffolds for bone tissue engineering and in situ drug delivery 2014 , 648-675		3
206	Fabrication of gold-nanoshell/polycaprolactonecomposite films with high electrical conductivity. <i>Materials Letters</i> , 2014 , 130, 164-167	3.3	3
205	1.10 Bioactive Glass-Ceramics ? 2017 , 235-243		3
204	Preparation of ZSM-5 Zeolite Membranes by Combined Hydrothermal Synthesis and Electrophoretic Deposition. <i>Key Engineering Materials</i> , 2015 , 654, 47-52	0.4	3
203	Novel Cardiac Patch Development Using Natural Biopolymers. ACS Symposium Series, 2014, 159-175	0.4	3
202	Electrophoretic deposition: Fundamentals and applications. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 1067-1068	6	3
201	Effect of pore shape on the ultrasonic velocityporosity correlation in sintered materials. <i>Journal of Materials Science Letters</i> , 1997 , 16, 623-625		3
200	Ceramic and Glass Matrix Composites Containing Carbon Nanotubes. <i>Materials Science Forum</i> , 2008 , 606, 61-77	0.4	3
199	Bioactive Composite Materials for Bone Tissue Engineering Scaffolds 2008, 279-311		3
198	Biomedical Applications: Tissue Engineering 2006 , 547-570		3
197	Cardiac tissue engineering 2007 , 335-356		3
196	A forecast of the future for biomaterials. <i>Journal of Materials Science: Materials in Medicine</i> , 2006 , 17, 963-4	4.5	3
195	Electrophoretic deposition: fundamentals and applications in materials science. <i>Journal of Materials Science</i> , 2006 , 41, 8029-8030	4.3	3
194	Velocity of elastic waves in porous ceramic materials: influence of pore structure. <i>Advances in Applied Ceramics</i> , 2003 , 102, 103-108		3
193	The Use of Electrophoretic Deposition for the Fabrication of Ceramic Matrix Composites. <i>Materials Science Forum</i> , 2004 , 455-456, 221-224	0.4	3

192	Effect of static pre-loading on fracture toughness of Nicalon fibre glass matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 17-23	5.3	3
191	Thermal shock resistant Al2TiO5-glass matrix composite. <i>Journal of Materials Science Letters</i> , 1999 , 18, 1907-1909		3
190	Comment on Bimple Mathematical Model for the Electrical Conductivity of Highly Porous Ceramics Journal of the American Ceramic Society, 1996 , 79, 2997-2998	3.8	3
189	Nature-Derived and Synthetic Additives to poly(e-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview <i>Frontiers in Chemistry</i> , 2021 , 9, 809676	5	3
188	Rational Design of a Triple-Layered Coaxial Extruder System: and Evaluations Directed Toward Optimizing Cell Viability. <i>International Journal of Bioprinting</i> , 2020 , 6, 282	6.2	3
187	An In Vitro Evaluation of the Biological and Osteogenic Properties of Magnesium-Doped Bioactive Glasses for Application in Bone Tissue Engineering. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	3
186	Lithography-based Additive Manufacturing of Customized Bioceramic Parts for Medical Applications 2013 ,		3
185	Estudio del da por choque timico en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio. <i>Materiales De Construccion</i> , 1998 , 48, 19-35	1.8	3
184	Numerical Simulations as Means for Tailoring Electrically Conductive Hydrogels Towards Cartilage Tissue Engineering by Electrical Stimulation. <i>Molecules</i> , 2020 , 25,	4.8	3
183	An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning. <i>Materials Science and Engineering C</i> , 2021 , 124, 112079	8.3	3
182	Adipogenic, chondrogenic, osteogenic, and antimicrobial features of glass ceramic material supplemented with manganese. <i>Journal of Non-Crystalline Solids</i> , 2021 , 559, 120709	3.9	3
181	3D printed poly(hydroxybutyrate-co-hydroxyvalerate) \$\mathbb{\textit{4}5S5}\$ bioactive glass composite resorbable scaffolds suitable for bone regeneration. <i>Journal of Materials Research</i> , 2021 , 36, 4000	2.5	3
180	Bioactive Glass Containing Coatings by Electrophoretic Deposition: Development and Applications 2019 , 3-33		3
179	Improvement of the Layer Adhesion of Composite Cardiac Patches. <i>Advanced Engineering Materials</i> , 2020 , 22, 1900986	3.5	3
178	Cellular Response to Sol-Gel Hybrid Materials Releasing Boron and Calcium Ions. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 491-506	5.5	3
177	Selective and caspase-independent cytotoxicity of bioactive glasses towards giant cell tumor of bone derived neoplastic stromal cells but not to bone marrow derived stromal cells. <i>Biomaterials</i> , 2021 , 275, 120977	15.6	3
176	Electrophoretic Deposition of Soft Coatings for Orthopaedic Applications. <i>Ceramic Transactions</i> ,145-15	5 2 0.1	3
175	Degradable and Bioactive Synthetic Composite Scaffolds for Bone Tissue Engineering 2012 , 111-137		3

(2002-2020)

174	Shape Matters: Crystal Morphology and Surface Topography Alter Bioactivity of Bioceramics in Simulated Body Fluid. <i>Advanced Engineering Materials</i> , 2020 , 22, 2000044	3.5	2
173	Optimization of Porcine Ovarian Follicle Isolation Methods for Better Developmental Potential. <i>Tissue Engineering - Part A</i> , 2020 , 26, 712-719	3.9	2
172	Apatite Mineralization Process from Silicocarnotite Bioceramics: Mechanism of Crystal Growth and Maturation. <i>Crystal Growth and Design</i> , 2020 , 20, 4030-4045	3.5	2
171	Nanostructured biocomposites for tissue engineering scaffolds 2017 , 501-542		2
170	Bioactive glass combined with zein as composite material for the application in bone tissue engineering. <i>Biomedical Glasses</i> , 2018 , 4, 72-81	2.7	2
169	A lifetime prediction method based on Cumulative Flaw Length Theory. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1175-1186	6	2
168	Use of DC Plasma Treated Air Pollution Control (APC) Residue Glass as Pozzolanic Additive in Portland Cement. <i>Waste and Biomass Valorization</i> , 2013 , 4, 719-728	3.2	2
167	Nanoscaled bioactive glass particles and nanofibres 2011 , 129-161		2
166	Glasses and ceramics from waste. Advances in Applied Ceramics, 2009, 108, 1-1	2.3	2
165	A statistical approach for the assessment of reliability in ceramic materials from ultrasonic velocity measurement: Cumulative Flaw Length Theory. <i>Engineering Fracture Mechanics</i> , 2009 , 76, 1750-1759	4.2	2
164	Ag-Doped Sol-Gel Derived Novel Composite Materials for Dental Applications. <i>Key Engineering Materials</i> , 2011 , 493-494, 637-642	0.4	2
163	Corrosion Resistance Study of Electrophoretic Deposited Hydroxyapatite on Stainless Steel for Implant Applications. <i>Key Engineering Materials</i> , 2012 , 507, 141-146	0.4	2
162	Determination of internal stresses during sintering of dispersion reinforced glass matrix composites. <i>Materials Chemistry and Physics</i> , 1997 , 48, 186-189	4.4	2
161	Fabrication of Woven Metal Fibre Reinforced Glass Matrix Composites. <i>Applied Composite Materials</i> , 1997 , 4, 145-155	2	2
160	Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods. <i>AIP Conference Proceedings</i> , 2008 ,	О	2
159	Formation of a Metastable Celsian-Cordierite Eutectic Structure During the Crystallization of a Ba-Osumilite Glassteramic. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 590-597	3.8	2
158	Colloidal Processing of Glassy-Phase-Free Mullite from Heterocoagulated Boehmite/Silica Nano-composite Sol Particles. <i>Advanced Engineering Materials</i> , 2002 , 4, 21-28	3.5	2
157	Fabrication, mechanical properties and thermal stability of a novel glass matrix composite material reinforced by short oxycarbide fibres. <i>Journal of Materials Science</i> , 2002 , 37, 4379-4384	4.3	2

156	Characterisation of glass matrix composites reinforced with lead zirconate titanate particles. <i>Materials Science & Discourse and Processing</i> , 2005 , 399, 281-291	5.3	2
155	On the viscosity of glass-crystal systems. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1803-1805		2
154	Colloidal processing of mullite ceramics: Are silica-alumina dompositel precursor particles essential?. <i>Journal of Materials Science Letters</i> , 2000 , 19, 1687-1688		2
153	Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties <i>Bioactive Materials</i> , 2022 , 17, 125-146	16.7	2
152	Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration <i>Cells</i> , 2022 , 11,	7.9	2
151	Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications - A review. <i>Current Opinion in Biomedical Engineering</i> , 2022 , 21, 100367	4.4	2
150	3D Hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance <i>Acta Biomaterialia</i> , 2022 ,	10.8	2
149	Recycling of foundry sand residuals as aggregates in ceramic formulations for construction materials 2009 ,		2
148	Ceramic tiles adding waste foundry sand to different clays 2010 ,		2
147	Comentario sobre "Abrasili Superficial de Azulejos". <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2001 , 40, 309-310	1.9	2
146	3D printing of biomedical materials and devices. <i>Journal of Materials Research</i> , 2021 , 36, 3713	2.5	2
145	Fabrication and characterization of Ag- and Ga-doped mesoporous glass-coated scaffolds based on natural marine sponges with improved mechanical properties. <i>Journal of Biomedical Materials Research - Part A</i> , 2021 , 109, 1309-1327	5.4	2
144	Influence of the replacement of silica by boron trioxide on the properties of bioactive glass scaffolds. <i>International Journal of Applied Glass Science</i> , 2021 , 12, 293-312	1.8	2
143	Impact of Zinc- or Copper-Doped Mesoporous Bioactive Glass Nanoparticles on the Osteogenic Differentiation and Matrix Formation of Mesenchymal Stromal Cells. <i>Materials</i> , 2021 , 14,	3.5	2
142	Pressure assisted flash sintering of Mn-Co based spinel coatings for solid oxide electrolysis cells (SOECs). <i>Ceramics International</i> , 2021 , 47, 17804-17808	5.1	2
141	SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 174, 95-102	6	2
140	Lithium-Containing Bioactive Glasses for Bone Regeneration 2019 , 201-217		2
139	Degradable magnesium implants: improving bioactive and antibacterial performance by designed hybrid coatings. <i>Journal of Materials Research</i> , 2021 , 36, 443-458	2.5	2

138	Protein Adsorption on SiO-CaO Bioactive Glass Nanoparticles with Controllable Ca Content. <i>Nanomaterials</i> , 2021 , 11,	5.4	2
137	Nanoscaled bioactive glass particles and nanofibers 2018 , 235-283		2
136	Model of dissolution in the framework of tissue engineering and drug delivery. <i>Biomechanics and Modeling in Mechanobiology</i> , 2018 , 17, 1331-1341	3.8	2
135	Electrophoretic deposition of composite coatings based on alginate matrix/45S5 bioactive glass particles doped with B, Zn or Sr. <i>Surface and Coatings Technology</i> , 2021 , 418, 127183	4.4	2
134	Deepening our understanding of bioactive glass crystallization using TEM and 3D nano-CT. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 4958-4969	6	2
133	Molecular Changes Induced in Melanoma by Cell Culturing in 3D Alginate Hydrogels. <i>Cancers</i> , 2021 , 13,	6.6	2
132	A shelf-life study of silica- and carbon-based mesoporous materials. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 101, 205-213	6.3	2
131	Nanocomposite electrospun fibers of poly(Eaprolactone)/bioactive glass with shape memory properties <i>Bioactive Materials</i> , 2022 , 11, 230-239	16.7	2
130	Random and aligned electrospun poly(Haprolactone) (PCL)/poly(1,8-octanediol-co-citrate) (POC) fiber mats for cardiac tissue engineering using benign solvents. <i>European Polymer Journal</i> , 2021 , 160, 110772	5.2	2
129	Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration <i>International Journal of Biological Macromolecules</i> , 2022 , 210, 324-336	7.9	2
128	Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring?. <i>Bioactive Materials</i> , 2023 , 19, 217-236	16.7	2
127	Mesoporous Bioactive Glass-Based Controlled Release Systems 2016 , 139-159		1
126	Bioactive polymertalcium phosphate composite coatings by electrophoretic deposition 2015 , 359-377		1
125	Up-Cycling of Iron-Rich Inorganic Waste in Functional Glass-Ceramics. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 959	2.4	1
124	Glass-ceramic proppants from sinter-crystallisation of waste-derived glasses. <i>Advances in Applied Ceramics</i> , 2018 , 117, 127-132	2.3	1
123	Biodegradable and bioactive polymer/inorganic phase nanocomposites for bone tissue engineering (BTE) 2014 , 115-150		1
122	Bioactive glasses: traditional and prospective applications in healthcare 2014 , 56-68		1
121	Stiffness Improvement of 45S5 Bioglass -Based Scaffolds Through Natural and Synthetic Biopolymer Coatings: An Ultrasonic Study. <i>Strain</i> , 2013 , 49, n/a-n/a	1.7	1

120	GlaCERCo: Glass and Ceramic Composites for High Technology Applications [Marie Curie Initial Training Network. <i>Advances in Applied Ceramics</i> , 2015 , 114, S1-S2	2.3	1
119	Electrophoretic Deposition of Nanostructured Titania-Bioactive Glass/Alginate Coatings on Stainless Steel. <i>Key Engineering Materials</i> , 2015 , 654, 159-164	0.4	1
118	Microwave Processing of Ceramic and Ceramic Matrix Composites 2012 , 485-515		1
117	Development and Characterization of Transparent Glass Matrix Composites. <i>Advances in Science and Technology</i> , 2010 , 71, 102-107	0.1	1
116	Nanostructured biocomposites for tissue engineering scaffolds 2010 , 509-546		1
115	Nickel Electrodeposition on Electrophoretically Deposited Carbon Nanotube Films. <i>Key Engineering Materials</i> , 2009 , 412, 87-92	0.4	1
114	Comment on Dependence of ceramics fracture properties on porosity (1) Journal of Materials Science Letters, 1997, 16, 683-684		1
113	Berechnung der Bruchfestigkeit von porßen Werkstoffen unter Betrachtung von Kerbspannungen. <i>Materialwissenschaft Und Werkstofftechnik</i> , 1997 , 28, 1-6	0.9	1
112	Comments and author's reply on The measurement of bulk viscosity and the elastic-viscous analogy[by S. D. R. Wilson [Acta Mechanica 120, 217025 (1997)]. <i>Acta Mechanica</i> , 1998 , 128, 263-266	2.1	1
111	Thermoschockbestfidigkeit und das Verhalten von SiC-faserverstfikten Glas-Matrix-Verbundwerkstoffen bei einer thermischen Wechselbeanspruchung. <i>Forschung Im</i> <i>Ingenieurwesen/Engineering Research</i> , 1998 , 64, 143-156	0.8	1
110	Sol-Gel Hydroxyapatite-CaO Composites: Fabrication and Bioactivity Studies. <i>Key Engineering Materials</i> , 2008 , 396-398, 99-102	0.4	1
109	Bioceramics for tissue engineering and drug delivery. <i>Advances in Applied Ceramics</i> , 2008 , 107, 233-233	2.3	1
108	Novel Glass-Ceramics for Dental Application by Sol Gel Technique. <i>Key Engineering Materials</i> , 2008 , 396-398, 153-156	0.4	1
107	Processing of Mullite Ceramics Using Fly Ash and Alumina 2006 , 184-188		1
106	Porous Glasses with Controlled Porosity: Processing and Modelling of Mechanical Properties. <i>Key Engineering Materials</i> , 2004 , 264-268, 2243-2246	0.4	1
105	Oxidation Protective Glass-Ceramic Coating for SiC Fibre Reinforced Glass Matrix Composites. <i>Advanced Engineering Materials</i> , 2004 , 6, 910-914	3.5	1
104	Microstructural variations in mullite ceramics derived from diphasic sols using different forming techniques. <i>Journal of Materials Research</i> , 2002 , 17, 3000-3003	2.5	1
103	Thermal Cycling, Thermal Aging and Thermal Shock Behavior of Nicalon-Fiber Reinforced Glass Matrix Composites. <i>Key Engineering Materials</i> , 1998 , 164-165, 345-350	0.4	1

102	Die Rißbigkeit und Brucharbeit von SiC-faser-verstükten Glasmatrix-Verbundwerkstoffen: Bestimmung durch die Chevron-Kerb-Technik. <i>Materialwissenschaft Und Werkstofftechnik</i> , 1999 , 30, 394	1-4:80	1
101	Fracture behavior and creep-fatigue response of fiber reinforced glass-ceramic matrix composites. <i>Materials Science</i> , 1996 , 32, 71-79	0.7	1
100	Characterisation of a pressureless sintered sapphire fibre reinforced mullite matrix composite. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 214, 170-173	5.3	1
99	Experimentelle Verifizierung einer neuer Modellgleichung fil die voraussage des Elastizitismoduls eines Verbundwerkstoffes. <i>Materialwissenschaft Und Werkstofftechnik</i> , 1994 , 25, 451-	458	1
98	Cerium-Containing Bioactive Glasses Promote In Vitro Lymphangiogenesis <i>Pharmaceutics</i> , 2022 , 14,	6.4	1
97	A Self-Assembled Matrix System for Cell-Bioengineering Applications in Different Dimensions, Scales, and Geometries <i>Small</i> , 2022 , e2104758	11	1
96	Preliminary Studies for One-Step Fabrication of Metallic Iron-Based Coatings on Magnesium as Temporary Protection in Biodegradable Medical Application. <i>Frontiers in Materials</i> , 2021 , 8,	4	1
95	Sintering of Glass Matrix Composites Containing A Particulate Inclusion Phase. <i>Advanced Composites Letters</i> , 1995 , 4, 096369359500400	1.2	1
94	Inorganic and Composite Bioactive Scaffolds for Bone Tissue Engineering 2008, 3-43		1
93	Dynamic Elastic Modulus and Vibrational Damping in Nicalon SiCxOy Fiber/Borosilicate Glass Composites: Effects of Thermal Cycling. <i>Journal of Composites Technology and Research</i> , 2000 , 22, 76		1
92	Finite element modelling of brittle matrix composites 2005 , 356-373		1
91	Effect of glycerol and H3PO4 on the bioactivity and degradability of rod-like SBA-15 particles with active surface for bone tissue engineering applications. <i>Microporous and Mesoporous Materials</i> , 2021 , 329, 111543	5.3	1
90	Bioactive glasses and ceramics for tissue engineering 2022 , 111-178		1
89	Co-culture of BMSCs and HUVECs with simvastatin-loaded gelatin nanosphere/chitosan coating on Mg alloy for osteogenic differentiation and vasculogenesis. <i>International Journal of Biological Macromolecules</i> , 2021 ,	7.9	1
88	Facile Synthesis of Gallium (III)-Chitosan Complexes as Antibacterial Biomaterial. <i>Pharmaceutics</i> , 2021 , 13,	6.4	1
87	Glass-Ceramic Materials Obtained by Sintering of Vitreous Powders from Industrial Waste: Production and Properties. <i>Construction Materials</i> , 2021 , 1, 63-79		1
86	3D Spheroids Versus 3D Tumor-Like Microcapsules: Confinement and Mechanical Stress May Lead to the Expression of Malignant Responses in Cancer Cells. <i>Advanced Biology</i> , 2021 , 5, e2000349		1
85	Polymer (PCL) fibers with Zn-doped mesoporous bioactive glass nanoparticles for tissue regeneration. <i>International Journal of Applied Glass Science</i> , 2021 , 12, 588-600	1.8	1

84	Characterizing the degradation behavior of bioceramic scaffolds 2016 , 127-147		1
83	Bioactive and Biodegradable Polymer-Based Composites 2021 , 674-700		1
82	Preparation and characterization of sintered bioactive borate glass tape. <i>Materials Letters</i> , 2021 , 282, 128843	3.3	1
81	Multilayered scaffolds for interface tissue engineering applications 2018 , 107-122		1
80	Antibacterial and antioxidant activity of cinnamon essential oil-laden 45S5 bioactive glass/soy protein composite scaffolds for the treatment of bone infections and oxidative stress. <i>Materials Science and Engineering C</i> , 2021 , 128, 112320	8.3	1
79	Polymer-Derived Biosilicate-like Glass-Ceramics: Engineering of Formulations and Additive Manufacturing of Three-Dimensional Scaffolds. <i>Materials</i> , 2021 , 14,	3.5	1
78	Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. <i>Materials Science and Engineering C</i> , 2021 , 128, 112336	8.3	1
77	Elektrophoretische Abscheidung zur Herstellung von faserverstEkten Keramik- und Glasmatrix-Verbundwerkstoffen Eine Bersicht 2001 , 73, 443		1
76	Development of Geopolymers from Plasma Vitrified Air Pollution Control Residues from Energy from Waste Plants. <i>Ceramic Transactions</i> ,295-304	0.1	1
75	Borosilicate Glass Foams from Glass Packaging Residues. <i>Ceramic Transactions</i> ,203-210	0.1	1
74	Bioprinting with bioactive alginate dialdehyde-gelatin (ADA-GEL) composite bioinks: Time-dependent in-situ crosslinking via addition of calcium-silicate particles tunes in vitro stability of 3D bioprinted constructs. <i>Bioprinting</i> , 2022 , 26, e00200	7	1
73	Bioactive glass selectively promotes cytotoxicity towards giant cell tumor of bone derived neoplastic stromal cells and induces MAPK signalling dependent autophagy <i>Bioactive Materials</i> , 2022 , 15, 456-468	16.7	1
72	3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility study. <i>Materials Today Bio</i> , 2022 , 100309	9.9	1
71	Advancing Processing Technologies for Designed Geopolymers: 3D Printing and Mechanical Machining. <i>InterCeram: International Ceramic Review</i> , 2019 , 68, 18-21	0.3	O
70	Positive effect of wrapping poly caprolactone/polyethylene glycol fibrous films on the mechanical properties of 45S5 bioactive glass scaffolds. <i>International Journal of Applied Ceramic Technology</i> , 2018 , 15, 921-929	2	0
69	Current state of nanostructured biomaterials for oral and cranio-maxillofacial rehabilitation 2018 , 1-12		O
68	Electrophoretic Deposition 2012 , 517-549		O
67	Preface: syntactic and composite foams special section. <i>Journal of Materials Science</i> , 2012 , 47, 5625-562	64.3	О

(2015-2021)

66	Electrophoretic deposition, microstructure and properties of multicomponent sodium alginate-based coatings incorporated with graphite oxide and hydroxyapatite on titanium biomaterial substrates. <i>Applied Surface Science</i> , 2021 , 575, 151688	6.7	О
65	Calorimetric approach to assess the apatite-forming capacity of bioactive glasses. <i>Journal of Non-Crystalline Solids</i> , 2020 , 550, 120290	3.9	0
64	Propagation-Based Phase Contrast Computed Tomography as a Suitable Tool for the Characterization of Spatial 3D Cell Distribution in Biomaterials. <i>Advanced Engineering Materials</i> , 2021 , 23, 2001188	3.5	О
63	Alkali-free processing of advanced open-celled sinter-crystallized glass-ceramics. <i>International Journal of Applied Glass Science</i> , 2021 , 12, 531-540	1.8	О
62	The effect of borate bioactive glass on the printability of methylcellulose-manuka honey hydrogels. Journal of Materials Research,1	2.5	0
61	Development of liquid-phase fabrication of nanotube array-based multiferroic nanocomposite film. <i>Journal of Alloys and Compounds</i> , 2021 , 869, 159219	5.7	O
60	Effect of buffer in simulated body fluid on morphology and crystallinity of hydroxyapatite precipitated on 45S5 bioactive glass-derived glass@eramic scaffolds: comparison of Good® buffer systems and TRIS. <i>Materials Today Chemistry</i> , 2021 , 21, 100527	6.2	0
59	Bioactive Glass Flakes as Innovative Fillers in Chitosan Membranes for Guided Bone Regeneration. <i>Advanced Engineering Materials</i> ,2101042	3.5	О
58	3D Printing of Mechanically Resistant Poly (Glycerol Sebacate) (PGS)-Zein Scaffolds for Potential Cardiac Tissue Engineering Applications. <i>Advanced Engineering Materials</i> ,2101768	3.5	O
57	Relation between chemical composition, morphology, and microstructure of poly(ether ether ketone)/reduced graphene oxide nanocomposite coatings obtained by electrophoretic deposition. <i>Journal of Materials Science</i> , 2022 , 57, 5839-5854	4.3	O
56	Organic solvent-free synthesis of dendritic mesoporous bioactive glass nanoparticles with remineralization capability. <i>Materials Letters</i> , 2022 , 320, 132366	3.3	O
55	Hyperelastic parameter identification of human articular cartilage and substitute materials. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022 , 105292	4.1	О
54	Bioactive Glass-Biopolymer Composites 2015 , 1-26		
53	Understanding the Colloidal Behaviour or 45S5 Bioactive Glass Particles to Obtain Bioactive-Glass Based Composite Coatings by EPD. <i>Key Engineering Materials</i> , 2015 , 654, 15-19	0.4	
52	Reply to the comment to: Bioactive layers based on black glasses on titanium substrates. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 3245-3245	3.8	
51	Nanostructured biomaterials embedding bioactive molecules 2018 , 143-158		
50	Verarbeitungstechnologien fd Geopolymere: 3D-Druck und mechanische Bearbeitung. <i>Keramische Zeitschrift</i> , 2019 , 71, 36-41	0.1	
49	Anisotropic Composites of Desaminotyrosine and Desaminotyrosyl Tyrosine Functionalized Gelatin and Bioactive Glass Microparticles. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1718, 9-14		

48	Bioaktive Glas-Scaffolds beschichtet mit Zein, einem pflanzlichen Protein: Entwicklung und Eigenschaften. <i>Keramische Zeitschrift</i> , 2017 , 69, 34-41	0.1
47	Effect of Additives on the Dispersion and Electrophoretic Deposition of Highly Diluted Enamel Suspensions. <i>InterCeram: International Ceramic Review</i> , 2015 , 64, 45-48	0.3
46	Myocardial tissue engineering 2014 , 387-413	
45	Bioactive Nanocomposites Containing Silicate Phases for Bone Replacement and Regeneration 2012 , 353-379	
44	Colloidal Methods 2012 , 145-181	
43	Biomaterials at Materials Science and Engineering (MSE) 2012. <i>Bioinspired, Biomimetic and Nanobiomaterials</i> , 2013 , 2, 98-99	1.3
42	Bioactive Glasses and Angiogenesis 2011 , 65-76	
41	Bioactive glass containing composites for bone and musculoskeletal tissue engineering scaffolds 2011 , 162-188	
40	On the sintering with rigid inclusions. Materialwissenschaft Und Werkstofftechnik, 1998, 29, 77-79	0.9
39	Dental Ceramics Modified by Ternary Glass-Ceramic Coatings: Characterization and In Vitro Bioactivity Study. <i>Key Engineering Materials</i> , 2008 , 396-398, 111-114	0.4
38	Bioactive Materials and Scaffolds for Tissue Engineering 2008 , 142-151	
37	Characterization of Ballistic Impact Damage in Wired Glass. <i>International Journal of Applied Ceramic Technology</i> , 2007 , 4, 350-358	2
36	Rees Rawlings special issue. <i>Journal of Materials Science</i> , 2008 , 43, 3989-3989	4.3
35	Progresses in the Electrophoretic Deposition Technique to Infiltrate Oxide Fibre Mats for Fabrication of Ceramic Matrix Composites. <i>Key Engineering Materials</i> , 2006 , 314, 195-200	0.4
34	Changes in Fracture Micromechanism with Increasing Reinforcement Volume Fraction in Glass Matrix Composite. <i>Materials Science Forum</i> , 2007 , 567-568, 369-372	0.4
33	Glass-Containing Composite Materials. Alternative Reinforcement Concepts 2005 , 511-532	
32	Fracture Toughness of Thermally Shocked SiC-Fibre Reinforced Glass Matrix Composites 2006 , 463-46	8
31	Processing and Characterisation of Mullite (Nextell 20) Fibre-Reinforced Mullite Matrix Composites from Hydrothermally Processed Mullite Precursors 2006 , 639-644	

30	Hot-Pressed Glass Matrix Composites Reinforced With Lead-Zirconate-Titanate (PZT) Particles. <i>Materials Research Innovations</i> , 2005 , 9, 25-26	1.9
29	Fracture Behaviour of Brittle (Glass) Matrix Composites. <i>Materials Science Forum</i> , 2005 , 482, 115-122	0.4
28	Porous Molybdenum Particle Reinforced Glass Matrix Composites Fabricated by Microwave Processing. <i>Key Engineering Materials</i> , 2001 , 206-213, 317-320	0.4
27	Glass-Ceramic Matrix Composites Made from Industrial Waste. <i>Key Engineering Materials</i> , 2001 , 206-213, 867-870	0.4
26	Environmentally Conscious Sintered Glass-Ceramics. <i>Key Engineering Materials</i> , 2001 , 206-213, 875-878	0.4
25	Glass and glass-ceramic matrix composites: from model systems to useful materials. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 702, 1	
24	A New Equation for the Determination of the Thermal Expansion Coefficient of Particulate Composites. <i>Advanced Composites Letters</i> , 1996 , 5, 096369359600500	1.2
23	Professor Dr. Gerhard Ondracek. <i>Materialwissenschaft Und Werkstofftechnik</i> , 1995 , 26, 568-568	0.9
22	GlaCERCo: Glass and Ceramic Composites for High Technology Applications Marie Curie Initial Training Network. <i>Advances in Applied Ceramics</i> , 2015 , 114, S1-S2	2.3
21	Myocardial tissue engineering 2022 , 409-457	
20	Mapping the elemental and crystalline phase distribution in Cu2+ doped 45S5 bioactive glass upon crystallization. <i>CrystEngComm</i> , 2022 , 24, 284-293	3-3
19	Quantification of Toughness Increase Due to Metal Particles in Glass Matrix Composites 2005 , 245-261	
18	Fracture Resistance of Hybrid Glass Matrix Composite and Its Degradation Due to Thermal Ageing and Thermal Shock 2005 , 263-274	
17	Chondrogenic Differentiation of Human Embryonic Stem Cells: The Effect of the Micro-Environment. <i>Tissue Engineering</i> , 2006 , 060706073730010	
16	Ultrasonic Characterization of Porous Biomaterials Across Different Frequencies 2007, 505-506	
15	Bioactive Glass B iopolymer Composites for Applications in Tissue Engineering 2015 , 1-26	
14	Bioactive Glass-Biopolymer Composites 2015 , 1-26	
13	Tissue Engineering, Myocardial8037-8051	

12	Castable Glass and Glass-Ceramics from DC Plasma Treatment of Air Pollution Control Residues. Ceramic Transactions,11-16	0.1
11	Glass-Ceramic Stoneware as a Promising Application for Waste Glasses. <i>Ceramic Transactions</i> ,57-62	0.1
10	Engineered Nanomaterials287-318	
9	The use of Electrophoretic Deposition for the Fabrication of Ceramic and Glass Matrix Composites. <i>Ceramic Transactions</i> ,55-66	0.1
8	International Journal of Applied Glass Science: Special Issue Editorial. <i>International Journal of Applied Glass Science</i> , 2021 , 12, 459-461	1.8
7	Biocompatible Ceramic-Biopolymer Coatings Obtained by Electrophoretic Deposition on Electron Beam Structured Titanium Alloy Surfaces. <i>Materials Science Forum</i> , 2016 , 879, 1552-1557	0.4
6	Initial studies on the cytotoxicity of ceramics prepared from dry discharge incinerator bottom ash dust. <i>Ceramics International</i> , 2016 , 42, 17924-17927	5.1
5	Bioactive glass variants for tissue engineering: From the macro- to the nanoscale 2021 , 353-373	
4	Glass and Glass-Ceramic Matrix Composites for Advanced Applications: Part I: Properties and Manufacturing Technologies 2021 , 277-287	
3	Glass and Glass-Ceramic Matrix Composites for Advanced Applications: Part II: Applications 2021 , 288-	303
2	Accelerated bioactive behavior of Nagelschmidtite bioceramics: Mimicking the nano and microstructural aspects of biological mineralization. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 7921-7921	6
1	Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles <i>Journal of Biomaterials Applications</i> , 2022 , 8853282211073731	2.9