Kevin R Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925659/publications.pdf Version: 2024-02-01

KEVIN RIVNCH

#	Article	IF	CITATIONS
1	A Novel Sphingosine Kinase Inhibitor Suppresses Chikungunya Virus Infection. Viruses, 2022, 14, 1123.	1.5	1
2	Discovery of In Vivo Active Sphingosine-1-phosphate Transporter (Spns2) Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 7656-7681.	2.9	10
3	Sphingosine Kinase 2 Inhibitors: Rigid Aliphatic Tail Derivatives Deliver Potent and Selective Analogues. ACS Bio & Med Chem Au, 2022, 2, 469-489.	1.7	1
4	Lipophilic tail modifications of 2-(hydroxymethyl)pyrrolidine scaffold reveal dual sphingosine kinase 1 and 2 inhibitors. Bioorganic and Medicinal Chemistry, 2021, 30, 115941.	1.4	9
5	Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. European Journal of Medicinal Chemistry, 2021, 212, 113121.	2.6	4
6	Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity. Journal of Medicinal Chemistry, 2020, 63, 1178-1198.	2.9	15
7	Mechanism of sphingosine 1-phosphate clearance from blood. Biochemical Journal, 2020, 477, 925-935.	1.7	23
8	Photoacoustic microscopy reveals the hemodynamic basis of sphingosine 1-phosphate-induced neuroprotection against ischemic stroke. Theranostics, 2018, 8, 6111-6120.	4.6	34
9	Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors. PLoS ONE, 2018, 13, e0192179.	1.1	6
10	Transforming Sphingosine Kinase 1 Inhibitors into Dual and Sphingosine Kinase 2 Selective Inhibitors: Design, Synthesis, and in Vivo Activity. Journal of Medicinal Chemistry, 2017, 60, 3933-3957.	2.9	36
11	Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3. Scientific Reports, 2017, 7, 127.	1.6	9
12	Sphingosine Kinase 2 Deficiency Attenuates Kidney Fibrosis via IFN-Î ³ . Journal of the American Society of Nephrology: JASN, 2017, 28, 1145-1161.	3.0	59
13	Sphingosine kinase inhibitors: a review of patent literature (2006-2015). Expert Opinion on Therapeutic Patents, 2016, 26, 1409-1416.	2.4	24
14	Structure–Activity Relationship Studies and Molecular Modeling of Naphthalene-Based Sphingosine Kinase 2 Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 229-234.	1.3	21
15	Structural Requirements and Docking Analysis of Amidine-Based Sphingosine Kinase 1 Inhibitors Containing Oxadiazoles. ACS Medicinal Chemistry Letters, 2016, 7, 487-492.	1.3	19
16	Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1245-L1252.	1.3	48
17	Structureâ~'Activity Relationship Studies and in Vivo Activity of Guanidine-Based Sphingosine Kinase Inhibitors: Discovery of SphK1- and SphK2-Selective Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 1879-1899.	2.9	67
18	Structure–activity relationship studies of the lipophilic tail region of sphingosine kinase 2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4956-4960.	1.0	16

Kevin R Lynch

#	Article	IF	CITATIONS
19	Sphingosine Kinase 2 Inhibition and Blood Sphingosine 1-Phosphate Levels. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 23-31.	1.3	59
20	Drugging Sphingosine Kinases. ACS Chemical Biology, 2015, 10, 225-233.	1.6	87
21	Decreased Peritoneal Ovarian Cancer Growth in Mice Lacking Expression of Lipid Phosphate Phosphohydrolase 1. PLoS ONE, 2015, 10, e0120071.	1.1	21
22	Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Molecular Metabolism, 2014, 3, 114-123.	3.0	168
23	Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. Acta Biomaterialia, 2014, 10, 4704-4714.	4.1	32
24	Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD. Blood, 2014, 124, 1941-1950.	0.6	70
25	Building a better sphingosine kinase-1 inhibitor. Biochemical Journal, 2012, 444, e1-e2.	1.7	17
26	Sphingosine kinase typeÂ2 inhibition elevates circulating sphingosine 1-phosphate. Biochemical Journal, 2012, 447, 149-157.	1.7	84
27	Effect of alkyl chain length on sphingosine kinase 2 selectivity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6817-6820.	1.0	17
28	Biosynthesis of alkyl lysophosphatidic acid by diacylglycerol kinases. Biochemical and Biophysical Research Communications, 2012, 422, 758-763.	1.0	12
29	Opioid/sphingosineâ€lâ€phosphate1 (S1P1) interactions in antinociception. FASEB Journal, 2012, 26, 1041.5.	0.2	0
30	Distinct generation, pharmacology, and distribution of sphingosine 1â€phosphate and dihydroâ€sphingosine 1â€phosphate in human neural progenitor cells. FASEB Journal, 2012, 26, 674.3.	0.2	0
31	Sphingosine kinase typeÂ1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochemical Journal, 2011, 440, 345-353.	1.7	68
32	A rapid assay for assessment of sphingosine kinase inhibitors and substrates. Analytical Biochemistry, 2011, 411, 230-235.	1.1	29
33	Cord Blood Plasma Enhances Migration of Hematopoietic Stem and Progenitor Cells (HSPC). Blood, 2011, 118, 2959-2959.	0.6	0
34	Sphingosine 1-phosphate chemical biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 508-512.	1.2	24
35	The Omnific Lysophospholipid Growth Factors. Annals of the New York Academy of Sciences, 2006, 905, xi-xiv.	1.8	12
36	Lysophospholipid receptor nomenclature. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 70-71.	1.2	50

Kevin R Lynch

#	Article	IF	CITATIONS
37	Structure–activity relationships of lysophosphatidic acid analogs. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 289-294.	1.2	42
38	FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Current Opinion in Immunology, 2002, 14, 569-575.	2.4	259
39	Characterization of the Human and Mouse Sphingosine 1-Phosphate Receptor, S1P5 (Edg-8): Structureâ `Activity Relationship of Sphingosine1-Phosphate Receptors. Biochemistry, 2001, 40, 14053-14060.	1.2	79
40	Life on the edg. Trends in Pharmacological Sciences, 1999, 20, 473-475.	4.0	69
41	Structureâ~Activity Relationships of Lysophosphatidic Acid:  Conformationally Restricted Backbone Mimetics. Journal of Medicinal Chemistry, 1999, 42, 963-970.	2.9	22
42	Structure/Activity Relationships in Lysophosphatidic Acid: The 2-Hydroxyl Moiety. Molecular Pharmacology, 1997, 52, 75-81.	1.0	33
43	Characterization of a human gene related to genes encoding somatostatin receptors. FEBS Letters, 1996, 398, 253-258.	1.3	92
44	Trypsin induces Ca2+-activated Clâ^'currents inX. laevisoocytes. FEBS Letters, 1994, 337, 235-238.	1.3	22
45	Cloning and expression of a bovine adenosine A1receptor cDNA. FEBS Letters, 1992, 297, 107-111.	1.3	49