List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925165/publications.pdf Version: 2024-02-01

SHENCULIA

#	Article	IF	CITATIONS
1	Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science and Applications, 2014, 3, e218-e218.	7.7	2,167
2	Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications, 2017, 8, 197.	5.8	747
3	Space-time-coding digital metasurfaces. Nature Communications, 2018, 9, 4334.	5.8	728
4	Polarization-independent wide-angle triple-band metamaterial absorber. Optics Express, 2011, 19, 9401.	1.7	643
5	Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser and Photonics Reviews, 2014, 8, 146-151.	4.4	553
6	Three-dimensional broadband ground-plane cloak made of metamaterials. Nature Communications, 2010, 1, 21.	5.8	439
7	Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light: Science and Applications, 2016, 5, e16076-e16076.	7.7	422
8	Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Physical Review Letters, 2008, 100, 023903.	2.9	408
9	Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101, .	1.5	404
10	Three-dimensional broadband and broad-angle transformation-optics lens. Nature Communications, 2010, 1, 124.	5.8	389
11	Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 2011, 110, .	1.1	354
12	Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Advanced Science, 2016, 3, 1600156.	5.6	343
13	Machine-learning reprogrammable metasurface imager. Nature Communications, 2019, 10, 1082.	5.8	343
14	Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. National Science Review, 2019, 6, 231-238.	4.6	298
15	Information metamaterials and metasurfaces. Journal of Materials Chemistry C, 2017, 5, 3644-3668.	2.7	297
16	Smart metasurface with self-adaptively reprogrammable functions. Light: Science and Applications, 2019, 8, 98.	7.7	294
17	A broadband terahertz absorber using multi-layer stacked bars. Applied Physics Letters, 2015, 106,	1.5	289
18	A tunable metamaterial absorber using varactor diodes. New Journal of Physics, 2013, 15, 043049.	1.2	260

#	Article	IF	CITATIONS
19	Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser and Photonics Reviews, 2014, 8, 137-145.	4.4	246
20	MIMO Transmission Through Reconfigurable Intelligent Surface: System Design, Analysis, and Implementation. IEEE Journal on Selected Areas in Communications, 2020, 38, 2683-2699.	9.7	242
21	An omnidirectional electromagnetic absorber made of metamaterials. New Journal of Physics, 2010, 12, 063006.	1.2	241
22	Planar plasmonic metamaterial on a thin film with nearly zero thickness. Applied Physics Letters, 2013, 102, .	1.5	238
23	Broadband metamaterial for optical transparency and microwave absorption. Applied Physics Letters, 2017, 110, .	1.5	234
24	Intelligent metasurface imager and recognizer. Light: Science and Applications, 2019, 8, 97.	7.7	225
25	A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nature Electronics, 2021, 4, 218-227.	13.1	224
26	Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Applied Physics Letters, 2013, 102, .	1.5	213
27	Breaking Reciprocity with Spaceâ€Timeâ€Coding Digital Metasurfaces. Advanced Materials, 2019, 31, e1904069.	11.1	208
28	Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces. ACS Applied Materials & Interfaces, 2017, 9, 36447-36455.	4.0	205
29	Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser and Photonics Reviews, 2015, 9, 83-90.	4.4	204
30	An optically driven digital metasurface for programming electromagnetic functions. Nature Electronics, 2020, 3, 165-171.	13.1	203
31	Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light: Science and Applications, 2018, 7, 90.	7.7	202
32	An ultra-wideband surface plasmonic filter in microwave frequency. Applied Physics Letters, 2014, 104,	1.5	185
33	Wireless Communications with Programmable Metasurface: New Paradigms, Opportunities, and Challenges on Transceiver Design. IEEE Wireless Communications, 2020, 27, 180-187.	6.6	183
34	Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Physical Review E, 2007, 76, 026606.	0.8	180
35	Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials. Advanced Optical Materials, 2015, 3, 1374-1380.	3.6	175
36	Anomalous Refraction and Nondiffractive Bessel-Beam Generation of Terahertz Waves through Transmission-Type Coding Metasurfaces. ACS Photonics, 2016, 3, 1968-1977.	3.2	175

#	Article	IF	CITATIONS
37	Information Metamaterials: bridging the physical world and digital world. PhotoniX, 2020, 1, .	5.5	167
38	Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Optics Express, 2014, 22, 13940.	1.7	164
39	Three-dimensional broadband and high-directivity lens antenna made of metamaterials. Journal of Applied Physics, 2011, 110, .	1.1	159
40	Wireless communications with programmable metasurface: Transceiver design and experimental results. China Communications, 2019, 16, 46-61.	2.0	158
41	Reduction of Mutual Coupling Between Closely Packed Patch Antennas Using Waveguided Metamaterials. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 389-391.	2.4	150
42	Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Applied Physics Letters, 2015, 106, .	1.5	149
43	Microwave metamaterials. National Science Review, 2018, 5, 134-136.	4.6	149
44	Addition Theorem for Digital Coding Metamaterials. Advanced Optical Materials, 2018, 6, 1701236.	3.6	148
45	Terahertz Beam Steering Technologies: From Phased Arrays to Fieldâ€Programmable Metasurfaces. Advanced Optical Materials, 2020, 8, 1900628.	3.6	148
46	An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction. Scientific Reports, 2016, 6, 20387.	1.6	146
47	Breaking the Challenge of Signal Integrity Using Time-Domain Spoof Surface Plasmon Polaritons. ACS Photonics, 2015, 2, 1333-1340.	3.2	143
48	Beamâ€Editing Coding Metasurfaces Based on Polarization Bit and Orbitalâ€Angularâ€Momentumâ€Mode Bit. Advanced Optical Materials, 2017, 5, 1700548.	3.6	142
49	Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm. Scientific Reports, 2014, 4, 5935.	1.6	141
50	Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials. Advanced Optical Materials, 2017, 5, 1700624.	3.6	133
51	A broadband transformation-optics metasurface lens. Applied Physics Letters, 2014, 104, 151601.	1.5	132
52	Information Metamaterial Systems. IScience, 2020, 23, 101403.	1.9	132
53	Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017, 110, .	1.5	127
54	Frequencyâ€Dependent Dualâ€Functional Coding Metasurfaces at Terahertz Frequencies. Advanced Optical Materials, 2016, 4, 1965-1973.	3.6	125

#	Article	IF	CITATIONS
55	Broadband transition between microstrip line and conformal surface plasmon waveguide. Journal Physics D: Applied Physics, 2014, 47, 315103.	1.3	124
56	Programmable metasurfaceâ€based RF chainâ€free 8PSK wireless transmitter. Electronics Letters, 2019, 55, 417-420.	0.5	121
57	Direct Transmission of Digital Message via Programmable Coding Metasurface. Research, 2019, 2019, 2584509.	2.8	115
58	Multi-Beam Forming and Controls by Metasurface With Phase and Amplitude Modulations. IEEE Transactions on Antennas and Propagation, 2019, 67, 6680-6685.	3.1	114
59	Polarization ontrolled Dualâ€Programmable Metasurfaces. Advanced Science, 2020, 7, 1903382.	5.6	112
60	Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser and Photonics Reviews, 2014, 8, 757-765.	4.4	108
61	Frequency-Controls of Electromagnetic Multi-Beam Scanning by Metasurfaces. Scientific Reports, 2014, 4, 6921.	1.6	107
62	Creation of Ghost Illusions Using Wave Dynamics in Metamaterials. Advanced Functional Materials, 2013, 23, 4028-4034.	7.8	106
63	Terahertz Broadband Lowâ€Reflection Metasurface by Controlling Phase Distributions. Advanced Optical Materials, 2015, 3, 1405-1410.	3.6	105
64	Realization of Multi-Modulation Schemes for Wireless Communication by Time-Domain Digital Coding Metasurface. IEEE Transactions on Antennas and Propagation, 2020, 68, 1618-1627.	3.1	105
65	An ultrathin directional carpet cloak based on generalized Snell's law. Applied Physics Letters, 2013, 103, .	1.5	104
66	High-order localized spoof surface plasmon resonances and experimental verifications. Scientific Reports, 2015, 5, 9590.	1.6	104
67	A Thin Selfâ€Feeding Janus Metasurface for Manipulating Incident Waves and Emitting Radiation Waves Simultaneously. Annalen Der Physik, 2020, 532, 2000020.	0.9	98
68	Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics, 2020, 9, 3271-3278.	2.9	97
69	Experiments on Active Cloaking and Illusion for Laplace Equation. Physical Review Letters, 2013, 111, 173901.	2.9	96
70	Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves. Journal of Optics (United Kingdom), 2017, 19, 084004.	1.0	95
71	Radar illusion via metamaterials. Physical Review E, 2011, 83, 026601.	0.8	94
72	Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface. Applied Physics Letters, 2017, 110, .	1.5	90

#	Article	IF	CITATIONS
73	An optically transparent metasurface for broadband microwave antireflection. Applied Physics Letters, 2018, 112, .	1.5	89
74	Space-Energy Digital-Coding Metasurface Based on an Active Amplifier. Physical Review Applied, 2019, 11,	1.5	89
75	Broadband Allâ€Dielectric Magnifying Lens for Farâ€Field Highâ€Resolution Imaging. Advanced Materials, 2013, 25, 6963-6968.	11.1	85
76	Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface. Optics Express, 2015, 23, 29128.	1.7	83
77	Reprogrammable plasmonic topological insulators with ultrafast control. Nature Communications, 2021, 12, 5468.	5.8	83
78	Magnetic Localized Surface Plasmons. Physical Review X, 2014, 4, .	2.8	77
79	Wireless Communication Based on Information Metasurfaces. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1493-1510.	2.9	77
80	A bi-layered quad-band metamaterial absorber at terahertz frequencies. Journal of Applied Physics, 2015, 118, .	1.1	76
81	Multitasking Shared Aperture Enabled with Multiband Digital Coding Metasurface. Advanced Optical Materials, 2018, 6, 1800657.	3.6	76
82	Transparently curved metamaterial with broadband millimeter wave absorption. Photonics Research, 2019, 7, 478.	3.4	75
83	Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Applied Physics Letters, 2018, 113, .	1.5	74
84	Controllable and Programmable Nonreciprocity Based on Detachable Digital Coding Metasurface. Advanced Optical Materials, 2019, 7, 1901285.	3.6	73
85	Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials. Advanced Science, 2017, 4, 1700098.	5.6	72
86	A reconfigurable active acoustic metalens. Applied Physics Letters, 2021, 118, .	1.5	72
87	Folded Transmitarray Antenna With Circular Polarization Based on Metasurface. IEEE Transactions on Antennas and Propagation, 2021, 69, 806-814.	3.1	71
88	Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles. Scientific Reports, 2015, 5, 12476.	1.6	70
89	Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Scientific Reports, 2016, 6, 23396.	1.6	69
90	A Broadband Bessel Beam Launcher Using Metamaterial Lens. Scientific Reports, 2015, 5, 11732.	1.6	67

#	Article	IF	CITATIONS
91	Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. ACS Applied Materials & Interfaces, 2017, 9, 21503-21514.	4.0	66
92	Layered high-gain lens antennas via discrete optical transformation. Applied Physics Letters, 2008, 93, .	1.5	65
93	Bidirectional bending splitter of designer surface plasmons. Applied Physics Letters, 2011, 99, .	1.5	65
94	Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photonics Research, 2021, 9, 116.	3.4	65
95	Editing Arbitrarily Linear Polarizations Using Programmable Metasurface. Physical Review Applied, 2020, 13, .	1.5	64
96	Highâ€Efficiency Synthesizer for Spatial Waves Based on Spaceâ€Timeâ€Coding Digital Metasurface. Laser and Photonics Reviews, 2020, 14, 1900133.	4.4	63
97	Orbitalâ€Angularâ€Momentumâ€Encrypted Holography Based on Coding Information Metasurface. Advanced Optical Materials, 2021, 9, 2002155.	3.6	62
98	Pattern-Reconfigurable Planar Array Antenna Characterized by Digital Coding Method. IEEE Transactions on Antennas and Propagation, 2020, 68, 1170-1175.	3.1	60
99	Tunable, reconfigurable, and programmable metamaterials. Microwave and Optical Technology Letters, 2020, 62, 9-32.	0.9	60
100	Programmable Reflection–Transmission Sharedâ€Aperture Metasurface for Realâ€Time Control of Electromagnetic Waves in Full Space. Advanced Science, 2021, 8, e2100149.	5.6	60
101	Programmable Manipulations of Terahertz Beams by Transmissive Digital Coding Metasurfaces Based on Liquid Crystals. Advanced Optical Materials, 2021, 9, 2100932.	3.6	60
102	Spoof surface plasmon photonics. Reviews of Modern Physics, 2022, 94, .	16.4	60
103	High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial. Scientific Reports, 2014, 4, 5744.	1.6	58
104	Broadband metasurface for independent control of reflected amplitude and phase. AIP Advances, 2016, 6, .	0.6	58
105	Linear and Nonlinear Polarization Syntheses and Their Programmable Controls based on Anisotropic Timeâ€Đomain Digital Coding Metasurface. Small Structures, 2021, 2, 2000060.	6.9	58
106	Isotropic Holographic Metasurfaces for Dualâ€Functional Radiations without Mutual Interferences. Advanced Functional Materials, 2016, 26, 29-35.	7.8	56
107	An Active Wideband and Wide-Angle Electromagnetic Absorber at Microwave Frequencies. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1913-1916.	2.4	56
108	Full‧pace Manipulations of Electromagnetic Wavefronts at Two Frequencies by Encoding Both Amplitude and Phase of Metasurface. Advanced Materials Technologies, 2021, 6, 2001032.	3.0	53

#	Article	IF	CITATIONS
109	Polarization Modulation for Wireless Communications Based on Metasurfaces. Advanced Functional Materials, 2021, 31, 2103379.	7.8	53
110	Smart Doppler Cloak Operating in Broad Band and Full Polarizations. Advanced Materials, 2021, 33, e2007966.	11.1	52
111	Spoof plasmon hybridization. Laser and Photonics Reviews, 2017, 11, 1600191.	4.4	51
112	Recent progress on metamaterials: From effective medium model to real-time information processing system. Progress in Quantum Electronics, 2019, 67, 100223.	3.5	50
113	Gradient index circuit by waveguided metamaterials. Applied Physics Letters, 2009, 94, .	1.5	49
114	An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons. Applied Physics Letters, 2018, 113, .	1.5	47
115	A metasurface-based light-to-microwave transmitter for hybrid wireless communications. Light: Science and Applications, 2022, 11, 126.	7.7	47
116	Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Applied Physics Letters, 2016, 109, .	1.5	46
117	Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces. Scientific Reports, 2016, 6, 25639.	1.6	45
118	An Optically Transparent Near-Field Focusing Metasurface. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2015-2027.	2.9	45
119	High Efficiency Polarizationâ€Encoded Holograms with Ultrathin Bilayer Spinâ€Decoupled Information Metasurfaces. Advanced Optical Materials, 2021, 9, 2001609.	3.6	44
120	Enhancement of Current Density by dc Electric Concentrator. Scientific Reports, 2012, 2, 956.	1.6	43
121	Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface. Applied Physics Letters, 2018, 112, .	1.5	43
122	Tunable Acoustic Metasurface for Three-Dimensional Wave Manipulations. Physical Review Applied, 2021, 15, .	1.5	43
123	Diffuse reflections by randomly gradient index metamaterials. Optics Letters, 2010, 35, 808.	1.7	42
124	Pass-band reconfigurable spoof surface plasmon polaritons. Journal of Physics Condensed Matter, 2018, 30, 134004.	0.7	42
125	Frequency-multiplexed pure-phase microwave meta-holograms using bi-spectral 2-bit coding metasurfaces. Nanophotonics, 2020, 9, 703-714.	2.9	42
126	Tailoring Radiation Patterns in Broadband With Controllable Aperture Field Using Metamaterials. IEEE Transactions on Antennas and Propagation, 2013, 61, 5792-5798.	3.1	40

#	Article	IF	CITATIONS
127	Controlling the Bandwidth of Terahertz Lowâ€Scattering Metasurfaces. Advanced Optical Materials, 2016, 4, 1773-1779.	3.6	39
128	A Spoof Surface Plasmon Transmission Line Loaded with Varactors and Shortâ€Circuit Stubs and Its Application in Wilkinson Power Dividers. Advanced Materials Technologies, 2018, 3, 1800046.	3.0	39
129	Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials. Journal of Applied Physics, 2017, 121, .	1.1	38
130	Experimental verification of a broadband planar focusing antenna based on transformation optics. New Journal of Physics, 2011, 13, 063028.	1.2	37
131	Independent control of differently-polarized waves using anisotropic gradient-index metamaterials. Scientific Reports, 2014, 4, 6337.	1.6	37
132	Free‧tanding Metasurfaces for Highâ€Efficiency Transmitarrays for Controlling Terahertz Waves. Advanced Optical Materials, 2016, 4, 384-390.	3.6	37
133	Flexible Controls of Terahertz Waves Using Coding and Programmable Metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-12.	1.9	37
134	Frequency-dependent transmission-type digital coding metasurface controlled by light intensity. Applied Physics Letters, 2018, 113, .	1.5	36
135	Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface. Applied Physics Reviews, 2020, 7, .	5.5	36
136	Space-Time-Coding Digital Metasurfaces: Principles and Applications. Research, 2021, 2021, 9802673.	2.8	36
137	Gainâ€Assisted Active Spoof Plasmonic Fano Resonance for Highâ€Resolution Sensing of Glucose Aqueous Solutions. Advanced Materials Technologies, 2020, 5, 1900767.	3.0	34
138	Information theory of metasurfaces. National Science Review, 2020, 7, 561-571.	4.6	34
139	Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons. Applied Physics Letters, 2017, 110, .	1.5	33
140	Acoustic planar surface retroreflector. Physical Review Materials, 2018, 2, .	0.9	33
141	Splitting spoof surface plasmon polaritons to different directions with high efficiency in ultra-wideband frequencies. Optics Letters, 2019, 44, 3374.	1.7	33
142	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Optics Express, 2018, 26, 22916.	1.7	32
143	Independent Control of Copolarized Amplitude and Phase Responses via Anisotropic Metasurfaces. Advanced Optical Materials, 2020, 8, 1902126.	3.6	32
144	Millimeterâ€Wave Digital Coding Metasurfaces Based on Nematic Liquid Crystals. Advanced Theory and Simulations, 2019, 2, 1900141.	1.3	31

#	Article	IF	CITATIONS
145	Analog signal processing through space-time digital metasurfaces. Nanophotonics, 2021, 10, 1753-1764.	2.9	30
146	Amplification and Manipulation of Nonlinear Electromagnetic Waves and Enhanced Nonreciprocity using Transmissive Spaceâ€Timeâ€Coding Metasurface. Advanced Science, 2022, 9, e2105960.	5.6	30
147	Wide-Angle Frequency Beam Scanning Antenna Based on the Higher-Order Modes of Spoof Surface Plasmon Polariton. IEEE Transactions on Antennas and Propagation, 2020, 68, 7652-7657.	3.1	29
148	Simultaneous <i>in situ</i> Direction Finding and Field Manipulation Based on Space-Time-Coding Digital Metasurface. IEEE Transactions on Antennas and Propagation, 2022, 70, 4774-4783.	3.1	28
149	Fast design of broadband terahertz diffusion metasurfaces. Optics Express, 2017, 25, 1050.	1.7	27
150	Harmonic information transitions of spatiotemporal metasurfaces. Light: Science and Applications, 2020, 9, 198.	7.7	27
151	Spin-Symmetry Breaking Through Metasurface Geometric Phases. Physical Review Applied, 2019, 12, .	1.5	26
152	Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials. Journal of Applied Physics, 2011, 110, 084908.	1.1	25
153	Reduction of Shielding-Box Volume Using SPP-Like Transmission Lines. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 1486-1492.	1.4	25
154	Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies. Journal Physics D: Applied Physics, 2017, 50, 404002.	1.3	25
155	Optically transparent coding metasurfaces based on indium tin oxide films. Journal of Applied Physics, 2018, 124, 023102.	1.1	25
156	Interplay Between RIS and AI in Wireless Communications: Fundamentals, Architectures, Applications, and Open Research Problems. IEEE Journal on Selected Areas in Communications, 2021, 39, 2271-2288.	9.7	25
157	Flexible controls of scattering clouds using coding metasurfaces. Scientific Reports, 2016, 6, 37545.	1.6	24
158	Low-reflection beam refractions by ultrathin Huygens metasurface. AIP Advances, 2015, 5, .	0.6	23
159	An Optically Controllable Transformationâ€dc Illusion Device. Advanced Materials, 2015, 27, 4628-4633.	11.1	22
160	Microwave Metamaterials. Annalen Der Physik, 2019, 531, 1800445.	0.9	22
161	Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums. Optics Express, 2018, 26, 31664.	1.7	21
162	Polarization Multiplexing Hologram Realized by Anisotropic Digital Metasurface. Advanced Theory and Simulations, 2021, 4, 2100046.	1.3	21

#	Article	IF	CITATIONS
163	Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide. Applied Physics Letters, 2017, 110, .	1.5	19
164	Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure. Beilstein Journal of Nanotechnology, 2018, 9, 1437-1447.	1.5	19
165	2-bit amplitude-modulated coding metasurfaces based on indium tin oxide films. Journal of Applied Physics, 2019, 126, .	1.1	19
166	Programmable Amplitude oding Metasurface with Multifrequency Modulations. Advanced Intelligent Systems, 2021, 3, 2000260.	3.3	19
167	Line Waves Existing at Junctions of Dual-Impedance Metasurfaces. ACS Photonics, 2021, 8, 2285-2293.	3.2	19
168	Asynchronous Spaceâ€Time oding Digital Metasurface. Advanced Science, 2022, 9, .	5.6	19
169	Bandâ€stop filter based on spoof surface plasmon polaritons. Electronics Letters, 2019, 55, 607-609.	0.5	18
170	Full controls of OAM vortex beam and realization of retro and negative reflections at oblique incidence using dual-band 2-bit coding metasurface. Materials Research Express, 2019, 6, 125804.	0.8	18
171	Radiationâ€Type Metasurfaces for Advanced Electromagnetic Manipulation. Advanced Functional Materials, 2021, 31, 2100569.	7.8	18
172	Highâ€Efficiency Spatialâ€Wave Frequency Multiplication Using Strongly Nonlinear Metasurface. Advanced Science, 2021, 8, e2101212.	5.6	18
173	Routing Acoustic Waves via a Metamaterial with Extreme Anisotropy. Physical Review Applied, 2019, 12, .	1.5	16
174	Control of the harmonic near-field distributions by an active metasurface loaded with pin diodes. Photonics Research, 2021, 9, 344.	3.4	16
175	Metamaterial Lenses and Their Applications at Microwave Frequencies. Advanced Photonics Research, 2021, 2, 2100001.	1.7	16
176	Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces. Journal Physics D: Applied Physics, 2021, 54, 035305.	1.3	16
177	Manipulation of Electromagnetic and Acoustic Wave Behaviors via Shared Digital Coding Metallic Metasurfaces. Advanced Intelligent Systems, 2019, 1, 1900038.	3.3	15
178	Simultaneous Conversion of Polarization and Frequency via Timeâ€Divisionâ€Multiplexing Metasurfaces. Advanced Optical Materials, 2021, 9, 2101043.	3.6	14
179	Mathematical Operations of Transmissive Near Fields Controlled by Metasurface with Phase and Amplitude Modulations. Annalen Der Physik, 2020, 532, 2000069.	0.9	13
180	Localized Surface Magnetic Modes Propagating Along a Chain of Connected Subwavelength Metamaterial Resonators. Physical Review Applied, 2018, 10, .	1.5	12

#	Article	IF	CITATIONS
181	Arbitrary power allocation for multiple beams using amplitude- and phase-coded metasurfaces. Journal Physics D: Applied Physics, 2021, 54, 165106.	1.3	12
182	Highly integrated programmable metasurface for multifunctions in reflections and transmissions. APL Materials, 2022, 10, .	2.2	12
183	Metamaterials: Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials (Advanced Optical Materials 10/2015). Advanced Optical Materials, 2015, 3, 1373-1373.	3.6	11
184	Anisotropic and nonlinear metasurface for multiple functions. Science China Information Sciences, 2021, 64, 1.	2.7	11
185	Design and experiment of perfect relay lens based on the Schwarz-Christoffel mapping. Applied Physics Letters, 2014, 104, 073510.	1.5	10
186	Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface. Scientific Reports, 2015, 5, 15853.	1.6	10
187	Realization of a broadband electromagnetic gateway at microwave frequencies. Applied Physics Letters, 2015, 107, .	1.5	10
188	Metasurfaces: Wireless Communications through a Simplified Architecture Based on Timeâ€Đomain Digital Coding Metasurface (Adv. Mater. Technol. 7/2019). Advanced Materials Technologies, 2019, 4, 1970037.	3.0	10
189	Controls of transmitted electromagnetic waves for diverse functionalities using polarization-selective dual-band 2 bit coding metasurface. Journal of Optics (United Kingdom), 2020, 22, 015104.	1.0	10
190	Dualâ€band reconfigurable metasurfaceâ€assisted Fabry–Pérot antenna with highâ€gain radiation and low scattering. IET Microwaves, Antennas and Propagation, 2020, 14, 1933-1942.	0.7	10
191	A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies. Electronics (Switzerland), 2021, 10, 4.	1.8	10
192	Generation of high-order orbital angular momentum beams and split beams simultaneously by employing anisotropic coding metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 065103.	1.0	9
193	Representing Quantum Information with Digital Coding Metasurfaces. Advanced Science, 2020, 7, 2001648.	5.6	9
194	2D achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons: broadband and profile-robust. Journal Physics D: Applied Physics, 2018, 51, 045108.	1.3	7
195	Passive amplitude-phase modulations and sensing based on Mach–Zehnder interferometer of spoof surface plasmon polaritons. Journal of Optics (United Kingdom), 2021, 23, 075101.	1.0	7
196	A broadband random metasurface for Radar Cross Section reduction. , 2015, , .		6
197	A 1-Bit Coding Metasurface With Polarization Conversion in X-Band. Frontiers in Materials, 2022, 9, .	1.2	6
198	A Wideband Waveguide Antenna with Nearly Equal E- and H-Plane Radiation Patterns. International Journal of Antennas and Propagation, 2013, 2013, 1-8.	0.7	5

#	Article	IF	CITATIONS
199	The engineering way from spoof surface plasmon polaritons to radiations. EPJ Applied Metamaterials, 2019, 6, 9.	0.8	5
200	Broadband digital coding metasurface holography. Journal of Applied Physics, 2021, 130, .	1.1	5
201	One-dimensional leaky-wave antenna producing multiple beams. AIP Advances, 2017, 7, 025109.	0.6	4
202	0.02-wavelengths-thick transmission-type designer wave plate with high efficiency. Journal Physics D: Applied Physics, 2019, 52, 375105.	1.3	4
203	Tunable triple-band millimeter-wave absorbing metasurface based on nematic liquid crystal. AIP Advances, 2022, 12, .	0.6	4
204	Wave propagation in reconfigurable broadband gain metamaterials at microwave frequencies. Journal of Applied Physics, 2016, 119, 194904.	1.1	3
205	Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial. AIP Advances, 2015, 5, 127134.	0.6	2
206	A metamaterial sensor for detecting the location of a sub-wavelength object. Applied Physics Letters, 2022, 120, .	1.5	2
207	Suppression of the Timeâ€Domain Sputtering Effect Using Lowâ€Scattering Metasurfaces. Advanced Photonics Research, 0, , 2100332.	1.7	0