List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925056/publications.pdf Version: 2024-02-01

FLIEN D KETTERSON

#	Article	IF	CITATIONS
1	Adaptation, Exaptation, and Constraint: A Hormonal Perspective. American Naturalist, 1999, 154, S4-S25.	2.1	542
2	Testosterone and Avian Life Histories: Effects of Experimentally Elevated Testosterone on Behavior and Correlates of Fitness in the Dark-Eyed Junco (Junco hyemalis). American Naturalist, 1992, 140, 980-999.	2.1	398
3	Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behavioral Ecology, 2012, 23, 960-969.	2.2	285
4	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
5	Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2005-2010.	2.6	228
6	Natural Variation in a Testosteroneâ€Mediated Tradeâ€Off between Mating Effort and Parental Effort. American Naturalist, 2007, 170, 864-875.	2.1	220
7	Steroid Hormones and Immune Function: Experimental Studies in Wild and Captive Darkâ€Eyed Juncos (Junco hyemalis). American Naturalist, 2001, 157, 408-420.	2.1	213
8	Hormone-mediated suites as adaptations and evolutionary constraints. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1611-1620.	4.0	204
9	Phenotypic integration and independence: Hormones, performance, and response to environmental change. Integrative and Comparative Biology, 2009, 49, 365-379.	2.0	202
10	Testosterone affects reproductive success by influencing extra–pair fertilizations in male dark–eyed juncos (Aves: Junco hyemalis). Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1599-1603.	2.6	166
11	Testosterone and mate choice in the dark-eyed junco. Animal Behaviour, 1997, 54, 1135-1146.	1.9	159
12	Consequences of elevating plasma testosterone in females of a socially monogamous songbird: evidence of constraints on male evolution?. Hormones and Behavior, 2004, 46, 171-178.	2.1	144
13	Paternal influence on growth and survival of dark-eyed junco young: do parental males benefit?. Animal Behaviour, 1988, 36, 1601-1618.	1.9	136
14	Seasonal and individual variation in response to GnRH challenge in male dark-eyed juncos (Junco) Tj ETQq0 0 0	rgBT /Overl	ock 10 Tf 50
15	Effects of testosterone on spatial activity in free-ranging male dark-eyed juncos, Junco hyemalis. Animal Behaviour, 1994, 47, 1445-1455.	1.9	130
16	Testosterone and Avian Life Histories: Effects of Experimentally Elevated Testosterone on Prebasic Molt and Survival in Male Dark-Eyed Juncos. Condor, 1992, 94, 364-370.	1.6	121
17	Phenotypic engineering: using hormones to explore the mechanistic and functional bases of phenotypic variation in nature. Ibis, 1996, 138, 70-86.	1.9	118

18Behavioral and physiological responses to experimentally elevated testosterone in female dark-eyed
juncos (Junco hyemalis carolinensis). Hormones and Behavior, 2006, 50, 200-207.2.1112

#	Article	lF	CITATIONS
19	The Effect of Exogenous Testosterone on Parental Behavior, Plasma Prolactin, and Prolactin Binding Sites in Dark-Eyed Juncos. Hormones and Behavior, 1998, 34, 1-10.	2.1	107
20	Exogenous Testosterone and the Adrenocortical Response in Dark-Eyed Juncos. Auk, 1999, 116, 64-72.	1.4	106
21	Natural Selection on Testosterone Production in a Wild Songbird Population. American Naturalist, 2010, 175, 687-701.	2.1	103
22	Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behavioral Ecology, 2010, 21, 608-614.	2.2	99
23	Competitive females are successful females; phenotype, mechanism, and selection in a common songbird. Behavioral Ecology and Sociobiology, 2012, 66, 241-252.	1.4	97
24	Seasonal Variation in Volatile Compound Profiles of Preen Gland Secretions of the Dark-eyed Junco (Junco hyemalis). Journal of Chemical Ecology, 2006, 33, 183-198.	1.8	92
25	Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behavioral Ecology, 2011, 22, 1256-1263.	2.2	80
26	Testosterone response to GnRH in a female songbird varies with stage of reproduction: implications for adult behaviour and maternal effects. Functional Ecology, 2007, 21, 767-775.	3.6	79
27	Diet quality affects an attractive white plumage pattern in dark-eyed juncos (Junco hyemalis). Behavioral Ecology and Sociobiology, 2007, 61, 1391-1399.	1.4	79
28	Hormonal, Behavioral, and Life-History Traits Exhibit Correlated Shifts in Relation to Population Establishment in a Novel Environment. American Naturalist, 2014, 184, E147-E160.	2.1	73
29	Effects of Experimentally Elevated Testosterone on Plasma Corticosterone and Corticosteroid-Binding Globulin in Dark-Eyed Juncos (Junco hyemalis). General and Comparative Endocrinology, 1997, 108, 141-151.	1.8	69
30	A Study of Fasting in Tree Sparrows (Spizella arborea) and Dark-Eyed Juncos (Junco hyemalis): Ecological Implications. Auk, 1982, 99, 299-308.	1.4	63
31	Elevated testosterone reduces choosiness in female dark–eyed juncos (Junco hyemalis): evidence for a hormonal constraint on sexual selection?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1377-1384.	2.6	61
32	Bird odour predicts reproductive success. Animal Behaviour, 2013, 86, 697-703.	1.9	61
33	Experimentally-elevated testosterone, female parental care, and reproductive success in a songbird, the Dark-eyed Junco (Junco hyemalis). Hormones and Behavior, 2008, 54, 571-578.	2.1	56
34	Diet quality affects egg size and number but does not reduce maternal antibody transmission in Japanese quail Coturnix japonica. Journal of Animal Ecology, 2005, 74, 1051-1058.	2.8	54
35	Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict. PLoS ONE, 2013, 8, e61784.	2.5	52
36	Influence of experimentally elevated testosterone on nest defence in dark-eyed juncos. Animal Behaviour, 1998, 56, 617-621.	1.9	47

#	Article	IF	CITATIONS
37	Role of Testosterone in Stimulating Seasonal Changes in a Potential Avian Chemosignal. Journal of Chemical Ecology, 2011, 37, 1349-1357.	1.8	47
38	Differential gene expression in seasonal sympatry: mechanisms involved in diverging life histories. Biology Letters, 2016, 12, 20160069.	2.3	47
39	Examining sources of variation in HPG axis function among individuals and populations of the dark-eyed junco. Hormones and Behavior, 2014, 65, 179-187.	2.1	46
40	Experimental elevation of testosterone lowers fitness in female dark-eyed juncos. Hormones and Behavior, 2013, 63, 782-790.	2.1	45
41	Social Environment Has a Primary Influence on the Microbial and Odor Profiles of a Chemically Signaling Songbird. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	45
42	Song Frequency Does Not Reflect Differences in Body Size among Males in Two Oscine Species. Ethology, 2008, 114, 1084-1093.	1.1	44
43	Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research, 2013, 2, 115.	1.6	44
44	Reproductive Allochrony in Seasonally Sympatric Populations Maintained by Differential Response to Photoperiod: Implications for Population Divergence and Response to Climate Change. American Naturalist, 2016, 187, 436-446.	2.1	42
45	Female ornamentation and male mate choice in dark-eyed juncos. Animal Behaviour, 2004, 67, 93-102.	1.9	41
46	Differential gene regulation underlies variation in melanic plumage coloration in the darkâ€eyed junco (<i>Junco hyemalis</i>). Molecular Ecology, 2018, 27, 4501-4515.	3.9	41
47	Correlational selection leads to genetic integration of body size and an attractive plumage trait in dark-eyed juncos. Evolution; International Journal of Organic Evolution, 2005, 59, 658-71.	2.3	37
48	De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an ecological model system. BMC Genomics, 2012, 13, 305.	2.8	35
49	Two Sides of the Same Coin? Consistency in Aggression to Conspecifics and Predators in a Female Songbird. Ethology, 2011, 117, 786-795.	1.1	33
50	Divergence along the gonadal steroidogenic pathway: Implications for hormone-mediated phenotypic evolution. Hormones and Behavior, 2016, 84, 1-8.	2.1	33
51	Effect of acute stressor on reproductive behavior differs between urban and rural birds. Ecology and Evolution, 2016, 6, 6546-6555.	1.9	33
52	Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. Journal of Experimental Biology, 2019, 222, .	1.7	33
53	Seasonal timing and population divergence: when to breed, when to migrate. Current Opinion in Behavioral Sciences, 2015, 6, 50-58.	3.9	31
54	Potential for sexual conflict assessed via testosterone-mediated transcriptional changes in liver and muscle of a songbird. Journal of Experimental Biology, 2014, 217, 507-17.	1.7	28

#	Article	IF	CITATIONS
55	Mellowing with age: older parents are less responsive to a stressor in a longâ€lived seabird. Functional Ecology, 2010, 24, 1037-1044.	3.6	27
56	Variation in Ejaculate Quality in Dark-Eyed Juncos According to Season, Stage of Reproduction, and Testosterone Treatment. Auk, 1998, 115, 684-693.	1.4	25
57	Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 5-15.	1.6	25
58	Early spring sex differences in luteinizing hormone response to gonadotropin releasing hormone in co-occurring resident and migrant dark-eyed juncos (Junco hyemalis). General and Comparative Endocrinology, 2016, 236, 17-23.	1.8	24
59	Sedentary songbirds maintain higher prevalence of haemosporidian parasite infections than migratory conspecifics during seasonal sympatry. PLoS ONE, 2018, 13, e0201563.	2.5	24
60	Robust behavioral effects of song playback in the absence of testosterone or corticosterone release. Hormones and Behavior, 2012, 62, 418-425.	2.1	23
61	Sources of variation in HPG axis reactivity and individually consistent elevation of sex steroids in a female songbird. General and Comparative Endocrinology, 2013, 194, 230-239.	1.8	23
62	Gonads and the evolution of hormonal phenotypes. Integrative and Comparative Biology, 2016, 56, 225-234.	2.0	21
63	Artificial light at night amplifies seasonal relapse of haemosporidian parasites in a widespread songbird. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201831.	2.6	20
64	Individual variation in testosterone and parental care in a female songbird; The dark-eyed junco (Junco) Tj ETQq0	0 0 rgBT /	Overlock 10
65	Earlyâ€breeding females experience greater telomere loss. Molecular Ecology, 2019, 28, 114-126.	3.9	19
66	A migratory lifestyle is associated with shorter telomeres in a songbird (<i>Junco hyemalis</i>). Auk, 2016, 133, 649-653.	1.4	18
67	Animal Migration: An Overview of One of Nature's Great Spectacles. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 479-497.	8.3	18
68	Highly context-specific activation of the HPG axis in the dark-eyed junco and implications for the challenge hypothesis. General and Comparative Endocrinology, 2014, 201, 65-73.	1.8	17
69	Mechanisms Associated with an Advance in the Timing of Seasonal Reproduction in an Urban Songbird. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	17
70	Migratory strategy explains differences in timing of female reproductive development in seasonally sympatric songbirds. Functional Ecology, 2019, 33, 1651-1662.	3.6	16
71	Reactivation of latent infections with migration shapes population-level disease dynamics. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201829.	2.6	16

⁷²The Influence of Exogenous Testosterone on the Dynamics of Nestling Provisioning in Dark-Eyed
Juncos. Ethology, 2007, 113, 18.1115

#	Article	IF	CITATIONS
73	Hypothalamic–pituitary–adrenal axis activity is not elevated in a songbird (Junco hyemalis) preparing for migration. General and Comparative Endocrinology, 2016, 232, 60-66.	1.8	15
74	Mouth Color Signals Thermal State of Nestling Dark-Eyed Juncos (Junco hyemalis). Ethology, 2003, 109, 171-182.	1.1	14
75	Female darkâ€eyed juncos <i>Junco hyemalis thurberi</i> produce maleâ€like song in a territorial context during the early breeding season. Journal of Avian Biology, 2018, 49, jav-01566.	1.2	14
76	Urban birdsongs: higher minimum song frequency of an urban colonist persists in a common garden experiment. Animal Behaviour, 2020, 170, 33-41.	1.9	14
77	Testosterone Manipulation of Male Attractiveness has no Detectable Effect on Female Home-Range Size and Behavior During the Fertile Period. Ethology, 2002, 108, 713-726.	1.1	13
78	Changes in processes downstream of the hypothalamus are associated with seasonal follicle development in a songbird, the dark-eyed junco (Junco hyemalis). General and Comparative Endocrinology, 2019, 270, 103-112.	1.8	13
79	Song rates of dark-eyed juncos do not increase when females are fertile. Behavioral Ecology and Sociobiology, 1997, 41, 165-169.	1.4	12
80	Testosterone production, sexually dimorphic morphology, and digit ratio in the dark-eyed junco. Behavioral Ecology, 2013, 24, 462-469.	2.2	12
81	The effect of chronic and acute stressors, and their interaction, on testes function: an experimental test during testicular recrudescence. Journal of Experimental Biology, 2018, 221, .	1.7	11
82	Leukocyte profiles vary with breeding latitude and infection status in a seasonally sympatric songbird. Animal Migration, 2019, 6, 28-40.	1.0	11
83	Long-Distance Homing by Nonmigratory Dark-Eyed Juncos. Condor, 1986, 88, 539-542.	1.6	10
84	Can Experience Alter the Avian Annual Cycle? Results of Migration Experiments with Indigo Buntings. Ethology, 1988, 79, 333-341.	1.1	10
85	Genomes to space stations: the need for the integrative study of migration for avian conservation. Biology Letters, 2018, 14, .	2.3	10
86	Condition explains individual variation in mobbing behavior. Ethology, 2017, 123, 495-502.	1.1	9
87	Suppression of Autumnal Migratory Unrest in Dark-Eyed Juncos Held During Summer on, Near, or Far From their Previous Wintering Sites. Auk, 1987, 104, 303-310.	1.4	8
88	Experiments on Winterâ€site Attachment in Young Darkâ€eyed Juncos. Ethology, 1991, 87, 123-133.	1.1	7
89	CORRELATIONAL SELECTION LEADS TO GENETIC INTEGRATION OF BODY SIZE AND AN ATTRACTIVE PLUMAGE TRAIT IN DARK-EYED JUNCOS. Evolution; International Journal of Organic Evolution, 2005, 59, 658.	2.3	6
90	Male and female testosteroneis one sex made in the image of the other? A comment on Goymann and Wingfield. Behavioral Ecology, 2014, 25, 702-702.	2.2	6

#	Article	IF	CITATIONS
91	Male courtship preference during seasonal sympatry may maintain population divergence. Ecology and Evolution, 2018, 8, 11833-11841.	1.9	6
92	Seasonally sympatric songbirds that differ in migratory strategy also differ in neuroendocrine measures. General and Comparative Endocrinology, 2020, 285, 113250.	1.8	6
93	Experimentally elevated testosterone shortens telomeres across years in a freeâ€living songbird. Molecular Ecology, 2022, 31, 6216-6223.	3.9	6
94	ANIMAL MIGRATION AS A MOVING TARGET FOR CONSERVATION: INTRA-SPECIES VARIATION AND RESPONSES TO ENVIRONMENTAL CHANGE, AS ILLUSTRATED IN A SOMETIMES MIGRATORY SONGBIRD. Environmental Law, 2011, 41, 289-316.	0.5	6
95	Urban residency and leukocyte profiles in a traditionally migratory songbird. Animal Migration, 2019, 6, 49-59.	1.0	5
96	Rapid evolutionary divergence of a songbird population following recent colonization of an urban area. Molecular Ecology, 2022, 31, 2625-2643.	3.9	5
97	A high-quality genome assembly and annotation of the dark-eyed junco <i>Junco hyemalis</i> , a recently diversified songbird. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	5
98	The probability of being infected with haemosporidian parasites increases with host age but is not affected by experimental testosterone elevation in a wild songbird. Journal of Avian Biology, 2022, 2022, .	1.2	4
99	Plasticity in female timing may explain earlier breeding in a North American songbird. Journal of Animal Ecology, 2022, 91, 1988-1998.	2.8	4
100	The Effects of Experimentally Elevated Testosterone and Food Deprivation on Food Consumption and Prey Size Preferences in Male Dark-Eyed Juncos (Junco hyemalis, Emberizidae: Passeriformes). Ethology, 2001, 107, 439-449.	1.1	3
101	Lipid signaling and fat storage in the dark-eyed junco. General and Comparative Endocrinology, 2017, 247, 166-173.	1.8	3
102	Condition- and context-dependent factors are related to courtship behavior of paired and unpaired males in a socially monogamous songbird. Auk, 2017, 134, 575-586.	1.4	3
103	Migrant and resident female songbirds differ in gonadal response to upstream stimulation during seasonal sympatry. General and Comparative Endocrinology, 2020, 293, 113469.	1.8	3
104	Perspective: Masculinized dominant females in a cooperatively breeding species, a case of cross-sexual transfer?. Molecular Ecology, 2007, 16, 1345-1347.	3.9	2
105	Densityâ€dependent fitness, not dispersal movements, drives temporal variation in spatial genetic structure in darkâ€eyed juncos (Junco hyemalis). Molecular Ecology, 2019, 28, 968-979.	3.9	2
106	What Do Ecology, Evolution, and Behavior Have in Common? The Organism in the Middle. American Naturalist, 2020, 196, 103-118.	2.1	2
107	The Function of Behavior as Assessed by Phenotypic Engineering withÂTestosterone. , 2017, , 305-320.		1

108 BEHAVIOR: Hormones in the Middle. Science, 2005, 310, 1905-1906.

12.6 0

#	Article	IF	CITATIONS
109	VII.2. Evolution of Hormones and Behavior. , 2013, , 616-623.		Ο
110	Elaina Marie Tuttle, 1963–2016. Auk, 2017, 134, 778-779.	1.4	0
111	Chasing the sun: When to migrate, when to breed. Functional Ecology, 2020, 34, 1750-1751.	3.6	Ο
112	Testosterone and sex: the role of hormones in sexual dimorphism. FASEB Journal, 2015, 29, 562.18.	0.5	0