Ludovic Galas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5924343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Granule Cell Migration and Differentiation. , 2022, , 139-171.		0
2	Comparative Structural and Functional Analyses of the Fusiform, Oval, and Triradiate Morphotypes of Phaeodactylum tricornutum Pt3 Strain. Frontiers in Plant Science, 2021, 12, 638181.	3.6	9
3	The Role of Galanin in Cerebellar Granule Cell Migration in the Early Postnatal Mouse during Normal Development and after Injury. Journal of Neuroscience, 2021, 41, 8725-8741.	3.6	1
4	Centrosome, the Newly Identified Passenger through Tunneling Nanotubes, Increases Binucleation and Proliferation Marker in Receiving Cells. International Journal of Molecular Sciences, 2021, 22, 9680.	4.1	5
5	Optimization of Advanced Live-Cell Imaging through Red/Near-Infrared Dye Labeling and Fluorescence Lifetime-Based Strategies. International Journal of Molecular Sciences, 2021, 22, 11092.	4.1	4
6	Advanced Imaging Approaches to Reveal Molecular Mechanisms Governing Neuroendocrine Secretion. Neuroendocrinology, 2021, , .	2.5	1
7	Glutamate controls vessel-associated migration of GABA interneurons from the pial migratory route via NMDA receptors and endothelial protease activation. Cellular and Molecular Life Sciences, 2020, 77, 1959-1986.	5.4	21
8	Cerebellar patterning. , 2020, , 107-135.		0
9	Investigating Tunneling Nanotubes in Cancer Cells: Guidelines for Structural and Functional Studies through Cell Imaging. BioMed Research International, 2020, 2020, 1-16.	1.9	21
10	Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis. FASEB Journal, 2020, 34, 6769-6790.	0.5	16
11	Granule Cell Migration and Differentiation. , 2020, , 1-33.		0
12	Twoâ€Photon Absorption and Cell Imaging of Fluoreneâ€Functionalized Epicocconone Analogues. Chemistry - A European Journal, 2019, 25, 10954-10964.	3.3	8
13	A versatile and recyclable molecularly imprinted polymer as an oxidative catalyst of sulfur derivatives: a new possible method for mustard gas and V nerve agent decontamination. Chemical Communications, 2019, 55, 13243-13246.	4.1	14
14	A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control. Cell Communication and Signaling, 2018, 16, 66.	6.5	28
15	"Probe, Sample, and Instrument (PSI)â€: The Hat-Trick for Fluorescence Live Cell Imaging. Chemosensors, 2018, 6, 40.	3.6	21
16	Characterization of fluorescent synthetic epicocconone-based dye through advanced light microscopies for live cell imaging applications. Dyes and Pigments, 2017, 141, 394-405.	3.7	1
17	Postnatal Migration of Cerebellar Interneurons. Brain Sciences, 2017, 7, 62.	2.3	31
18	Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction. Circulation, 2016, 133, 1484-1497.	1.6	245

LUDOVIC GALAS

#	Article	IF	CITATIONS
19	Structural and functional analysis of tunneling nanotubes (TnTs) using <i>g</i> CW STED and <i>g</i> confocal approaches. Biology of the Cell, 2015, 107, 419-425.	2.0	42
20	Ex Vivo Imaging of Postnatal Cerebellar Granule Cell Migration Using Confocal Macroscopy. Journal of Visualized Experiments, 2015, , e52810.	0.3	7
21	PACAP Enhances Axon Outgrowth in Cultured Hippocampal Neurons to a Comparable Extent as BDNF. PLoS ONE, 2015, 10, e0120526.	2.5	45
22	The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions. Developmental Neurobiology, 2015, 75, 369-387.	3.0	24
23	Corticalâ€layerâ€specific effects of PACAP and <scp>tPA</scp> on interneuron migration during postâ€natal development of the cerebellum. Journal of Neurochemistry, 2014, 130, 241-254.	3.9	17
24	Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats. Clinical Nutrition, 2014, 33, 694-701.	5.0	64
25	Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. Journal of Translational Medicine, 2013, 11, 94.	4.4	359
26	Glutamine and arginine improve permeability and tight junction protein expression in methotrexate-treated Caco-2 cells. Clinical Nutrition, 2013, 32, 863-869.	5.0	80
27	PACAP. , 2013, , 1038-1043.		Ο
28	Light stimuli control neuronal migration by altering of insulin-like growth factor 1 (IGF-1) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2630-2635.	7.1	24
29	Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5057-5062.	7.1	42
30	Methotrexate Modulates Tight Junctions Through NFâ€₽̂B, MEK, and JNK Pathways. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54, 463-470.	1.8	68
31	Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in MCF-7 Breast Cancer Cells. Journal of Biological Chemistry, 2012, 287, 7374-7387.	3.4	114
32	Pituitary adenylate cyclaseâ€activating polypeptide (PACAP) stimulates the expression and the release of tissue plasminogen activator (tPA) in neuronal cells: involvement of tPA in the neuroprotective effect of PACAP. Journal of Neurochemistry, 2011, 119, 920-931.	3.9	18
33	Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: A celebration of 35 years of collaborative research. General and Comparative Endocrinology, 2011, 170, 57-67.	1.8	10
34	Balanced effect of PACAP and FasL on granule cell death during cerebellar development: a morphological, functional and behavioural characterization. Journal of Neurochemistry, 2010, 113, 329-340.	3.9	14
35	Chromogranin A Promotes Peptide Hormone Sorting to Mobile Granules in Constitutively and Regulated Secreting Cells. Journal of Biological Chemistry, 2009, 284, 12420-12431.	3.4	64
36	TRH acts as a multifunctional hypophysiotropic factor in vertebrates. General and Comparative Endocrinology, 2009, 164, 40-50.	1.8	89

LUDOVIC GALAS

#	Article	IF	CITATIONS
37	Role of PACAP in Controlling Granule Cell Migration. Cerebellum, 2009, 8, 433-440.	2.5	17
38	Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacological Reviews, 2009, 61, 283-357.	16.0	948
39	Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum. Molecular Immunology, 2008, 45, 3767-3774.	2.2	65
40	Selenoprotein T is a PACAPâ€regulated gene involved in intracellular Ca ²⁺ mobilization and neuroendocrine secretion. FASEB Journal, 2008, 22, 1756-1768.	0.5	124
41	Neurotrophic effects of PACAP in the cerebellar cortex. Peptides, 2007, 28, 1746-1752.	2.4	65
42	The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. Journal of Neurochemistry, 2006, 98, 321-329.	3.9	108
43	PACAP and Ceramides Exert Opposite Effects on Migration, Neurite Outgrowth, and Cytoskeleton Remodeling. Annals of the New York Academy of Sciences, 2006, 1070, 265-270.	3.8	5
44	Vasotocin and Mesotocin Stimulate the Biosynthesis of Neurosteroids in the Frog Brain. Journal of Neuroscience, 2006, 26, 6749-6760.	3.6	41
45	Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2637-2642.	7.1	63
46	Distribution of the mRNAs encoding the thyrotropinâ€releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of <i>Xenopus laevis</i> : Effect of background color adaptation on TRH and TRH receptor gene expression. Journal of Comparative Neurology, 2004, 477,	1.6	26
47	Neuropeptide Y Inhibits Spontaneous α-Melanocyte-Stimulating Hormone (α-MSH) Release via a Y5 Receptor and Suppresses Thyrotropin-Releasing Hormone-Induced α-MSH Secretion via a Y1 Receptor in Frog Melanotrope Cells. Endocrinology, 2002, 143, 1686-1694.	2.8	22
48	Expression and Processing of the [Pro2,Met13]Somatostatin-14 Precursor in the Intermediate Lobe of the Frog Pituitary. Endocrinology, 2002, 143, 3472-3481.	2.8	12
49	Neuropeptide Y Inhibits the Biosynthesis of Sulfated Neurosteroids in the Hypothalamus through Activation of Y1Receptors. Endocrinology, 2002, 143, 1950-1963.	2.8	29
50	Immunohistochemical localization and biochemical characterization of ghrelin in the brain and stomach of the frogRana esculenta. Journal of Comparative Neurology, 2002, 450, 34-44.	1.6	32
51	Immunohistochemical localization and biochemical characterization of hypocretin/orexin-related peptides in the central nervous system of the frogRana ridibunda. Journal of Comparative Neurology, 2001, 429, 242-252.	1.6	59
52	Calcium waves in frog melanotrophs are generated by intracellular inactivation of TTX-sensitive membrane Na+ channel. Molecular and Cellular Endocrinology, 2000, 170, 197-209.	3.2	12
53	Involvement of Protein Kinase C and Protein Tyrosine Kinase in Thyrotropin-Releasing Hormone-Induced Stimulation of1± -Melanocyte-Stimulating Hormone Secretion in Frog Melanotrope Cells*. Endocrinology, 1999, 140, 3264-3272.	2.8	13
54	Involvement of Protein Kinase C and Protein Tyrosine Kinase in Thyrotropin-Releasing Hormone-Induced Stimulation of Â-Melanocyte-Stimulating Hormone Secretion in Frog Melanotrope Cells. Endocrinology, 1999, 140, 3264-3272.	2.8	3

LUDOVIC GALAS

#	Article	IF	CITATIONS
55	A Novel Peptide Generated from the C-Terminal Extension of Trout Proopiomelanocortin-A. Annals of the New York Academy of Sciences, 1998, 839, 483-485.	3.8	0
56	Involvement of extracellular and intracellular calcium sources in TRH-induced α-MSH secretion from frog melanotrope cells. Molecular and Cellular Endocrinology, 1998, 138, 25-39.	3.2	26
57	Pharmacological and Functional Characterization of Muscarinic Receptors in the Frog Pars Intermedia1. Endocrinology, 1998, 139, 3525-3533.	2.8	15