
Igor E Kasheverov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5924142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant. Nature Structural and Molecular Biology, 2005, 12, 582-588.	3.6	311
2	NMR Structure and Action on Nicotinic Acetylcholine Receptors of Water-soluble Domain of Human LYNX1. Journal of Biological Chemistry, 2011, 286, 10618-10627.	1.6	87
3	Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochemical Pharmacology, 2009, 78, 720-731.	2.0	75
4	Naturally Occurring Disulfide-bound Dimers of Three-fingered Toxins. Journal of Biological Chemistry, 2008, 283, 14571-14580.	1.6	73
5	Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLoS ONE, 2016, 11, e0149733.	1.1	65
6	Water-soluble LYNX1 Residues Important for Interaction with Muscle-type and/or Neuronal Nicotinic Receptors. Journal of Biological Chemistry, 2013, 288, 15888-15899.	1.6	48
7	Spatial Structure and Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models. Biomolecules, 2021, 11, 1.	1.8	48
8	Naturally Occurring and Synthetic Peptides Acting on Nicotinic Acetylcholine Receptors. Current Pharmaceutical Design, 2009, 15, 2430-2452.	0.9	46
9	Neurotoxins from Snake Venoms and α-Conotoxin ImI Inhibit Functionally Active Ionotropic γ-Aminobutyric Acid (GABA) Receptors. Journal of Biological Chemistry, 2015, 290, 22747-22758.	1.6	45
10	From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR. Scientific Reports, 2016, 6, 22349.	1.6	41
11	Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Frontiers in Pharmacology, 2019, 10, 474.	1.6	40
12	Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2. PLoS ONE, 2014, 9, e115428.	1.1	36
13	?-Conotoxin analogs with additional positive charge show increased selectivity towards Torpedo�californica and some neuronal subtypes of nicotinic acetylcholine receptors. FEBS Journal, 2006, 273, 4470-4481.	2.2	35
14	Dimeric α-Cobratoxin X-ray Structure. Journal of Biological Chemistry, 2012, 287, 6725-6734.	1.6	33
15	Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins. Toxins, 2015, 7, 1683-1701.	1.5	32
16	Interaction of α onotoxin ImII and its analogs with nicotinic receptors and acetylcholineâ€binding proteins: additional binding sites on <i>Torpedo</i> receptor. Journal of Neurochemistry, 2009, 111, 934-944.	2.1	27
17	Design of New α-Conotoxins: From Computer Modeling to Synthesis of Potent Cholinergic Compounds. Marine Drugs, 2011, 9, 1698-1714.	2.2	26
18	lsomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells, 2019, 8, 771.	1.8	26

IGOR E KASHEVEROV

#	Article	IF	CITATIONS
19	Marine Natural Products Acting on the Acetylcholine-Binding Protein and Nicotinic Receptors: From Computer Modeling to Binding Studies and Electrophysiology. Marine Drugs, 2014, 12, 1859-1875.	2.2	24
20	Novel long-chain neurotoxins from <i>Bungarus candidus</i> distinguish the two binding sites in muscle-type nicotinic acetylcholine receptors. Biochemical Journal, 2019, 476, 1285-1302.	1.7	24
21	High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method. Scientific Reports, 2016, 6, 36848.	1.6	23
22	Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors. PLoS ONE, 2017, 12, e0186206.	1.1	22
23	Threeâ€finger proteins from snakes and humans acting on nicotinic receptors: Old and new. Journal of Neurochemistry, 2021, 158, 1223-1235.	2.1	22
24	Interaction of Synthetic Human SLURP-1 with the Nicotinic Acetylcholine Receptors. Scientific Reports, 2017, 7, 16606.	1.6	20
25	From Synthetic Fragments of Endogenous Three-Finger Proteins to Potential Drugs. Frontiers in Pharmacology, 2019, 10, 748.	1.6	20
26	Arachidonoylcholine and Other Unsaturated Long-Chain Acylcholines Are Endogenous Modulators of the Acetylcholine Signaling System. Biomolecules, 2020, 10, 283.	1.8	19
27	Central loop of non-conventional toxin WTX from Naja kaouthia is important for interaction with nicotinic acetylcholine receptors. Toxicon, 2016, 119, 274-279.	0.8	18
28	High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues. Journal of Medicinal Chemistry, 2020, 63, 13656-13668.	2.9	18
29	Labeling of Torpedo californica nicotinic acetylcholine receptor subunits by cobratoxin derivatives with photoactivatable groups of different chemical nature at Lys23. FEBS Journal, 1998, 253, 229-235.	0.2	17
30	alpha-Conotoxin GI benzoylphenylalanine derivatives. 1H-NMR structures and photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor. FEBS Journal, 2006, 273, 1373-1388.	2.2	17
31	Photoactivatable α-conotoxins reveal contacts with all subunits as well as antagonist-induced rearrangements in theTorpedo californicaacetylcholine receptor. FEBS Journal, 2001, 268, 3664-3673.	0.2	16
32	Species specificity of rat and human α7 nicotinic acetylcholine receptors towards different classes of peptide and protein antagonists. Neuropharmacology, 2018, 139, 226-237.	2.0	15
33	Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Letters, 2019, 593, 2779-2789.	1.3	14
34	Oligoarginine Peptides, a New Family of Nicotinic Acetylcholine Receptor Inhibitors. Molecular Pharmacology, 2019, 96, 664-673.	1.0	14
35	Curare alkaloids from Matis Dart Poison: Comparison with d-tubocurarine in interactions with nicotinic, 5-HT3 serotonin and GABAA receptors. PLoS ONE, 2019, 14, e0210182.	1.1	14
36	Complex approach for analysis of snake venom α-neurotoxins binding to HAP, the high-affinity peptide. Scientific Reports, 2020, 10, 3861.	1.6	11

Igor E Kasheverov

#	Article	IF	CITATIONS
37	Antiviral Effects of Animal Toxins: Is There a Way to Drugs?. International Journal of Molecular Sciences, 2022, 23, 3634.	1.8	10
38	A comparative study on selectivity of alpha-conotoxins GI and ImI using their synthetic analogues and derivatives. Neurochemical Research, 2003, 28, 599-606.	1.6	9
39	α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology, 2021, 226, 152047.	0.8	9
40	Scope and limitations of pseudoprolines as individual amino acids in peptide synthesis. Amino Acids, 2021, 53, 665-671.	1.2	8
41	Novel Three-Finger Neurotoxins from Naja melanoleuca Cobra Venom Interact with GABAA and Nicotinic Acetylcholine Receptors. Toxins, 2021, 13, 164.	1.5	7
42	Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules, 2022, 12, 189.	1.8	7
43	Substance P derivatives with photoactivatable labels in the Nâ€ŧerminal part of the molecule. Chemical Biology and Drug Design, 1997, 50, 408-414.	1.2	5
44	Development of a recombinant immunotoxin for the immunotherapy of autoreactive lymphocytes expressing MOG-specific BCRs. Biotechnology Letters, 2016, 38, 1173-1180.	1.1	5
45	Interaction of α9α10 Nicotinic Receptors With Peptides and Proteins From Animal Venoms. Frontiers in Cellular Neuroscience, 2021, 15, 765541.	1.8	4
46	Point Mutations of Nicotinic Receptor α1 Subunit Reveal New Molecular Features of G153S Slow-Channel Myasthenia. Molecules, 2021, 26, 1278.	1.7	2
47	Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors. Frontiers in Molecular Biosciences. 2021. 8. 753283.	1.6	1