
Maliheh Ghadiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5923305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Curcumin as a wound healing agent. Life Sciences, 2014, 116, 1-7.	2.0	447
2	Biomedical applications of cationic clay minerals. RSC Advances, 2015, 5, 29467-29481.	1.7	179
3	Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics, 2019, 11, 113.	2.0	165
4	Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Critical Reviews in Biotechnology, 2020, 40, 213-230.	5.1	108
5	Scalable Surface Area Characterization by Electrokinetic Analysis of Complex Anion Adsorption. Langmuir, 2014, 30, 15143-15152.	1.6	92
6	Laponite clay as a carrier for in situ delivery of tetracycline. RSC Advances, 2013, 3, 20193.	1.7	85
7	Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite. Applied Clay Science, 2013, 85, 64-73.	2.6	64
8	A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip, 2019, 1, 100001.	1.8	58
9	The potential to treat lung cancer via inhalation of repurposed drugs. Advanced Drug Delivery Reviews, 2018, 133, 107-130.	6.6	57
10	Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. Journal of Materials Science: Materials in Medicine, 2014, 25, 2513-2526.	1.7	56
11	Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 2014, 4, 35332-35343.	1.7	42
12	A novel approach to enhance protein adsorption and cell proliferation on hydroxyapatite: citric acid treatment. RSC Advances, 2013, 3, 4040.	1.7	37
13	Metal–Organic Framework-Enhanced ELISA Platform for Ultrasensitive Detection of PD-L1. ACS Applied Bio Materials, 2020, 3, 4148-4158.	2.3	26
14	"Nanodecoysâ€+ Future of drug delivery by encapsulating nanoparticles in natural cell membranes. International Journal of Pharmaceutics, 2022, 621, 121790.	2.6	25
15	Cell-based therapies for the treatment of idiopathic pulmonary fibrosis (IPF) disease. Expert Opinion on Biological Therapy, 2016, 16, 375-387.	1.4	24
16	Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics, 2022, 14, 586.	2.0	23
17	Clinical side effects of continuous positive airway pressure in patients with obstructive sleep apnoea. Respirology, 2020, 25, 593-602.	1.3	21
18	The use of fatty acids as absorption enhancer for pulmonary drug delivery. International Journal of Pharmaceutics, 2018, 541, 93-100.	2.6	19

Maliheh Ghadiri

#	Article	IF	CITATIONS
19	Combination of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate for the treatment of inflammatory lung diseases: An in vitro study. European Journal of Pharmaceutical Sciences, 2018, 120, 96-106.	1.9	19
20	A mini-review on novel intraperiodontal pocket drug delivery materials for the treatment of periodontal diseases. Drug Delivery and Translational Research, 2014, 4, 295-301.	3.0	17
21	Recent Advances in Chronotherapy Targeting Respiratory Diseases. Pharmaceutics, 2021, 13, 2008.	2.0	16
22	Effect of polyunsaturated fatty acids (PUFAs) on airway epithelial cells' tight junction. Pulmonary Pharmacology and Therapeutics, 2016, 40, 30-38.	1.1	11
23	Co-Spray-Dried Urea Cross-Linked Hyaluronic Acid and Sodium Ascorbyl Phosphate as Novel Inhalable Dry Powder Formulation. Journal of Pharmaceutical Sciences, 2019, 108, 2964-2971.	1.6	11
24	In vitro characterization of physico-chemical properties, cytotoxicity, bioactivity of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate nasal powder formulation. International Journal of Pharmaceutics, 2019, 558, 341-350.	2.6	11
25	A 3D-printed microfluidic platform for simulating the effects of CPAP on the nasal epithelium. Biofabrication, 2021, 13, 035028.	3.7	11
26	The effects of dentin bonding agent formulas on their polymerization quality, and together with tooth tissues on their microleakage and shear bond strength: an explorative 3-step experiment. Journal of Advanced Prosthodontics, 2014, 6, 333.	1.1	10
27	Nasal Powder Formulation of Tranexamic Acid and Hyaluronic Acid for the Treatment of Epistaxis. Pharmaceutical Research, 2020, 37, 186.	1.7	9
28	Investigation into physical–chemical variables affecting the manufacture and dissolution of wet-milled clarithromycin nanoparticles. Pharmaceutical Development and Technology, 2014, 19, 911-921.	1.1	7
29	The effect of non-specific tight junction modulators on the transepithelial transport of poorly permeable drugs across airway epithelial cells. Journal of Drug Targeting, 2017, 25, 342-349.	2.1	7
30	Effect of continuous positive airway pressure treatment on permeability, inflammation and mucus production of human epithelial cells. ERJ Open Research, 2020, 6, 00327-2019.	1.1	6
31	Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules, 2022, 27, 1002.	1.7	2
32	Absorption enhancement of macromolecule-administered intrapulmonary. , 2020, , 147-161.		1
33	Effect of positive airway pressure oscillations on human epithelial cells. Vibroengineering PROCEDIA, 2019, 24, 58-62.	0.3	0
34	Investigating potential TRPV1 positive feedback to explain TRPV1 upregulation in airway disease states. Drug Development and Industrial Pharmacy, 2022, , 1-11.	0.9	0