
Shubhra S Pasayat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5923287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Applied Physics Express, 2021, 14, 011004.	1.1	96
2	High Linearity and High Gain Performance of N-Polar GaN MIS-HEMT at 30 GHz. IEEE Electron Device Letters, 2020, 41, 681-684.	2.2	46
3	Color-tunable &lt; 10 <i> <bì¼< b=""> </bì¼<></i> m square InGaN micro-LEDs on compliant GaN-on-porous-GaN pseudo-substrates. Applied Physics Letters, 2020, 117, .	1.5	44
4	Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. ACS Applied Materials & Interfaces, 2021, 13, 60553-60560.	4.0	42
5	Growth of strain-relaxed InGaN on micrometer-sized patterned compliant GaN pseudo-substrates. Applied Physics Letters, 2020, 116, .	1.5	38
6	Fabrication of relaxed InGaN pseudo-substrates composed of micron-sized pattern arrays with high fill factors using porous GaN. Semiconductor Science and Technology, 2019, 34, 115020.	1.0	30
7	Compliant Micron-Sized Patterned InGaN Pseudo-Substrates Utilizing Porous GaN. Materials, 2020, 13, 213.	1.3	22
8	First demonstration of improvement in hole conductivity in <i>c</i> -plane III-Nitrides through application of uniaxial strain. Japanese Journal of Applied Physics, 2019, 58, 030908.	0.8	16
9	First demonstration of RF N-polar GaN MIS-HEMTs grown on bulk GaN using PAMBE. Semiconductor Science and Technology, 2019, 34, 045009.	1.0	16
10	Method of growing elastically relaxed crack-free AlGaN on GaN as substrates for ultra-wide bandgap devices using porous GaN. Applied Physics Letters, 2020, 117, .	1.5	15
11	First experimental demonstration and analysis of electrical transport characteristics of a GaN-based HEMT with a relaxed InGaN channel. Semiconductor Science and Technology, 2020, 35, 075007.	1.0	9
12	Patterned Illâ€Nitrides on Porous GaN: Extending Elastic Relaxation from the Nano―to the Micrometer Scale. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100234.	1.2	9
13	Demonstration of device-quality 60% relaxed In0.2Ga0.8N on porous GaN pseudo-substrates grown by PAMBE. Journal of Applied Physics, 2022, 131, .	1.1	7
14	A Novel Concept using Derivative Superposition at the Device-Level to Reduce Linearity Sensitivity to Bias in N-polar GaN MISHEMT. , 2020, , .		5
15	Metal Organic Vapor Phase Epitaxy of Thick N-Polar InGaN Films. Electronics (Switzerland), 2021, 10, 1182.	1.8	3
16	Optimization of Digital Growth of Thick N-Polar InGaN by MOCVD. Journal of Electronic Materials, 2020, 49, 3450-3454.	1.0	2
17	Investigation and optimization of N-polar GaN porosification for regrowth of smooth hillocks-free GaN films. Applied Physics Letters, 2021, 119, .	1.5	2
18	Fully Relaxed, Crack-Free AlGaN with upto 50% Al Composition Grown on Porous GaN Pseudo-Substrate. Crystals, 2022, 12, 989.	1.0	1