Anne M Landau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5923270/publications.pdf

Version: 2024-02-01

55 papers 1,044 citations

489802 18 h-index 29 g-index

63 all docs 63 does citations

63 times ranked

1856 citing authors

#	Article	IF	CITATIONS
1	Validation and optimisation of an automatic blood sampler for preclinical positron emission tomography research in domestic pigs. Laboratory Animals, 2022, 56, 287-291.	0.5	1
2	Tips and traps for behavioural animal experimentation. Acta Neuropsychiatrica, 2022, 34, 240-252.	1.0	2
3	Synaptic Vesicle Glycoprotein 2A: Features and Functions. Frontiers in Neuroscience, 2022, 16, 864514.	1.4	21
4	Spontaneous partial recovery of striatal dopaminergic uptake despite nigral cell loss in asymptomatic MPTP-lesioned female minipigs. NeuroToxicology, 2022, 91, 166-176.	1.4	2
5	The intersection of astrocytes and the endocannabinoid system in the lateral habenula: on the fast-track to novel rapid-acting antidepressants. Molecular Psychiatry, 2022, , .	4.1	3
6	In vivo imaging of synaptic SV2A protein density in healthy and striatal-lesioned rats with [11C]UCB-J PET. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 819-830.	2.4	22
7	NMDA receptor ion channel activation detected in vivo with [¹⁸ F]GE-179 PET after electrical stimulation of rat hippocampus. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1301-1312.	2.4	12
8	PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats. Neurobiology of Disease, 2021, 149, 105229.	2.1	36
9	Exercise protects synaptic density in a rat model of Parkinson's disease. Experimental Neurology, 2021, 342, 113741.	2.0	16
10	[11C]MODAG-001â€"towards a PET tracer targeting α-synuclein aggregates. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1759-1772.	3.3	50
11	α-Synuclein Overexpression Increases Dopamine D2/3 Receptor Binding and Immune Activation in a Model of Early Parkinson's Disease. Biomedicines, 2021, 9, 1876.	1.4	5
12	Neonatal male circumcision is associated with altered adult socio-affective processing. Heliyon, 2020, 6, e05566.	1.4	13
13	Activation of NMDA receptor ion channels by deep brain stimulation in the pig visualised with [18F]GE-179 PET. Brain Stimulation, 2020, 13, 1071-1078.	0.7	11
14	Preclinical PET Studies of [11C]UCB-J Binding in Minipig Brain. Molecular Imaging and Biology, 2020, 22, 1290-1300.	1.3	8
15	Type of Anaesthetic Influences [11C]MDL100,907 Binding to 5HT2A Receptors in Porcine Brain. Molecular Imaging and Biology, 2020, 22, 797-804.	1.3	2
16	Ageing and amyloidosis underlie the molecular and pathological alterations of tau in a mouse model of familial Alzheimer's disease. Scientific Reports, 2019, 9, 15758.	1.6	27
17	Neuroinflammation and amyloid-beta 40 are associated with reduced serotonin transporter (SERT) activity in a transgenic model of familial Alzheimer's disease. Alzheimer's Research and Therapy, 2019, 11, 38.	3.0	21
18	Electroconvulsive stimulation differentially affects [$<$ sup>11 $<$ /sup>C]MDL100,907 binding to cortical and subcortical 5HT $<$ sub>2A $<$ /sub> receptors in porcine brain. Journal of Psychopharmacology, 2019, 33, 714-721.	2.0	7

#	Article	IF	Citations
19	Cortical and striatal serotonin transporter binding in a genetic rat model of depression and in response to electroconvulsive stimuli. European Neuropsychopharmacology, 2019, 29, 493-500.	0.3	3
20	Visualization of intrathecal delivery by PET-imaging. Journal of Neuroscience Methods, 2019, 317, 45-48.	1.3	4
21	Sucrose intake lowers ν-opioid and dopamine D2/3 receptor availability in porcine brain. Scientific Reports, 2019, 9, 16918.	1.6	27
22	Increased Inflammation and Unchanged Density of Synaptic Vesicle Glycoprotein 2A (SV2A) in the Postmortem Frontal Cortex of Alzheimer's Disease Patients. Frontiers in Cellular Neuroscience, 2019, 13, 538.	1.8	25
23	Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Experimental Neurology, 2018, 303, 142-152.	2.0	27
24	Acute in vivo effect of valproic acid on the GABAergic system in rat brain: A [11 C]Ro15-4513 microPET study. Brain Research, 2018, 1680, 110-114.	1.1	8
25	Elevated dopamine D1 receptor availability in striatum of Göttingen minipigs after electroconvulsive therapy. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 881-887.	2.4	12
26	Longitudinal monoaminergic PET imaging of chronic proteasome inhibition in minipigs. Scientific Reports, 2018, 8, 15715.	1.6	12
27	In vivo quantification of glial activation in minipigs overexpressing human αâ€synuclein. Synapse, 2018, 72, e22060.	0.6	15
28	Suppressed play behaviour and decreased oxytocin receptor binding in the amygdala after prenatal exposure to low-dose valproic acid. Behavioural Pharmacology, 2017, 28, 450-457.	0.8	16
29	Increased GABA _A receptor binding in amygdala after prenatal administration of valproic acid to rats. Acta Neuropsychiatrica, 2017, 29, 309-314.	1.0	7
30	Early synaptic dysfunction induced by α-synuclein in a rat model of Parkinson's disease. Scientific Reports, 2017, 7, 6363.	1.6	58
31	Radioligand binding analysis of $\hat{l}\pm 2$ adrenoceptors with $[11C]$ yohimbine in brain in vivo: Extended Inhibition Plot correction for plasma protein binding. Scientific Reports, 2017, 7, 15979.	1.6	14
32	Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats. Frontiers in Pharmacology, 2016, 7, 433.	1.6	21
33	Neonatal domoic acid alters in vivo binding of $[11C]$ yohimbine to $\hat{l}\pm 2$ -adrenoceptors in adult rat brain. Psychopharmacology, 2016, 233, 3779-3785.	1.5	5
34	NPY/Y2 gene therapeutic overexpression in hippocampus of experimental Beagle dogs. Neuropeptides, 2016, 55, 5.	0.9	0
35	<i>ln vivo</i> imaging of neuromelanin in Parkinson's disease using ¹⁸ F-AV-1451 PET. Brain, 2016, 139, 2039-2049.	3.7	113
36	\hat{l}_{\pm} ₂ -adrenoceptor binding in Flinders-sensitive line compared with Flinders-resistant line and Sprague-Dawley rats. Acta Neuropsychiatrica, 2015, 27, 345-352.	1.0	12

#	Article	IF	Citations
37	Noradrenaline and Brain Stimulation; a preliminary evaluation. Brain Stimulation, 2015, 8, 350-351.	0.7	О
38	Acute Vagal Nerve Stimulation Lowers $\hat{l}\pm 2$ Adrenoceptor Availability: Possible Mechanism of Therapeutic Action. Brain Stimulation, 2015, 8, 702-707.	0.7	34
39	Decreased inÂvivo α2 adrenoceptor binding in the Flinders Sensitive Line rat model of depression. Neuropharmacology, 2015, 91, 97-102.	2.0	22
40	How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease?. Current Neurology and Neuroscience Reports, 2015, 15, 53.	2.0	5
41	Quantification of [¹¹ C]yohimbine Binding to α ₂ Adrenoceptors in Rat Brain <i>in vivo</i> . Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 501-511.	2.4	13
42	Electroconvulsive shocks decrease $\hat{l}\pm 2$ -adrenoceptor binding in the Flinders rat model of depression. European Neuropsychopharmacology, 2015, 25, 404-412.	0.3	11
43	Xenotransplantation and Transgenic Technologies. , 2015, , 420-433.		0
44	PET Brain Imaging of Neuropeptide Y2 Receptors Using <i>N</i> - ¹¹ C-Methyl-JNJ-31020028 in Pigs. Journal of Nuclear Medicine, 2014, 55, 635-639.	2.8	12
45	Effects of Anesthesia and Species on the Uptake or Binding of Radioligands In Vivo in the GA¶ttingen Minipig. BioMed Research International, 2013, 2013, 1-9.	0.9	20
46	Antiparkinsonian Mechanism of Electroconvulsive Therapy in MPTP-Lesioned Non-Human Primates. Neurodegenerative Diseases, 2012, 9, 128-138.	0.8	11
47	Amphetamine challenge decreases yohimbine binding to $\hat{l}\pm 2$ adrenoceptors in Landrace pig brain. Psychopharmacology, 2012, 222, 155-163.	1.5	23
48	Serotonergic modulation of receptor occupancy in rats treated with <scp> < scp>â€DOPA after unilateral 6â€OHDA lesioning. Journal of Neurochemistry, 2012, 120, 806-817.</scp>	2.1	37
49	Fas expression promotes proteasomal activity in toxin-induced parkinsonism. Acta Neuropsychiatrica, 2012, 24, 166-171.	1.0	0
50	Electroconvulsive Therapy Alters Dopamine Signaling in the Striatum of Non-human Primates. Neuropsychopharmacology, 2011, 36, 511-518.	2.8	50
51	Sensory neuron and substance P involvement in symptoms of a zymosan-induced rat model of acute bowel inflammation. Neuroscience, 2007, 145, 699-707.	1.1	12
52	Proteasome inhibitor model of Parkinson's disease in mice is confounded by neurotoxicity of the ethanol vehicle. Movement Disorders, 2007, 22, 403-407.	2.2	22
53	Defective Fas expression exacerbates neurotoxicity in a model of Parkinson's disease. Journal of Experimental Medicine, 2005, 202, 575-581.	4.2	45
54	Fasâ€"Beyond Death: A regenerative role for Fas in the nervous system. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 551-562.	2.2	76

#	Article	IF	CITATIONS
55	<i>In vivo</i> Evidence That <i>SORL1</i> , Encoding the Endosomal Recycling Receptor SORLA, Can Function as a Causal Gene in Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	0