David A Prober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5923086/publications.pdf

Version: 2024-02-01

38 papers 3,631 citations

236925 25 h-index 302126 39 g-index

47 all docs

47 docs citations

47 times ranked

4836 citing authors

#	Article	IF	CITATIONS
1	Large-scale Analysis of Sleep in Zebrafish. Bio-protocol, 2022, 12, e4313.	0.4	6
2	Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Frontiers in Molecular Neuroscience, 2022, 15, 873520.	2.9	5
3	Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Molecular Psychiatry, 2022, 27, 3777-3793.	7.9	7
4	Macropinocytosis-mediated membrane recycling drives neural crest migration by delivering F-actin to the lamellipodium. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27400-27411.	7.1	17
5	Prokineticin receptor 2 affects GnRH3 neuron ontogeny but not fertility in zebrafish. Scientific Reports, 2020, 10, 7632.	3.3	4
6	Evolutionarily Conserved Regulation of Sleep by the Protein Translational Regulator PERK. Current Biology, 2020, 30, 1639-1648.e3.	3.9	18
7	Neuropeptide VF neurons promote sleep via the serotonergic raphe. ELife, 2020, 9, .	6.0	10
8	Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell, 2019, 178, 850-866.e26.	28.9	326
9	The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron, 2019, 103, 686-701.e8.	8.1	160
10	Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Scientific Reports, 2019, 9, 12405.	3.3	31
11	Linking immunity and sickness-induced sleep. Science, 2019, 363, 455-456.	12.6	4
12	$M\tilde{A}\frac{1}{4}$ ller Glial Cells Participate in Retinal Waves via Glutamate Transporters and AMPA Receptors. Cell Reports, 2019, 27, 2871-2880.e2.	6.4	21
13	The Neuromodulator Adenosine Regulates Oligodendrocyte Migration at Motor Exit Point Transition Zones. Cell Reports, 2019, 27, 115-128.e5.	6.4	21
14	Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Science Advances, 2019, 5, eaax4249.	10.3	29
15	Discovery of Hypocretin/Orexin Ushers in a New Era of Sleep Research. Trends in Neurosciences, 2018, 41, 70-72.	8.6	8
16	Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. ELife, 2018, 7, .	6.0	102
17	Attacking sleep from a new angle: contributions from zebrafish. Current Opinion in Neurobiology, 2017, 44, 80-88.	4.2	35
18	Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish. Neuron, 2017, 95, 153-168.e6.	8.1	43

#	Article	IF	CITATIONS
19	Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools. Journal of Neuroscience, 2017, 37, 11353-11365.	3.6	41
20	The Jellyfish Cassiopea Exhibits a Sleep-like State. Current Biology, 2017, 27, 2984-2990.e3.	3.9	171
21	Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Current Biology, 2017, 27, 3796-3811.e5.	3.9	61
22	Genetic and neuronal regulation of sleep by neuropeptide VF. ELife, 2017, 6, .	6.0	49
23	Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. ENeuro, 2017, 4, ENEURO.0286-16.2017.	1.9	29
24	Mapping a multiplexed zoo of mRNA expression. Development (Cambridge), 2016, 143, 3632-3637.	2.5	198
25	Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (<i>Danio rerio</i>). Endocrinology, 2016, 157, 4012-4020.	2.8	8
26	TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nature Methods, 2016, 13, 147-150.	19.0	56
27	A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron, 2016, 89, 842-856.	8.1	81
28	QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. Journal of Neuroscience, 2016, 36, 1823-1840.	3.6	43
29	Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development (Cambridge), 2015, 142, 1113-24.	2.5	55
30	Melatonin Is Required for the Circadian Regulation of Sleep. Neuron, 2015, 85, 1193-1199.	8.1	200
31	Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. ELife, 2015, 4, e07000.	6.0	97
32	A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Research, 2013, 41, 2769-2778.	14.5	115
33	Regulation of zebrafish sleep and arousal states: current and prospective approaches. Frontiers in Neural Circuits, 2013, 7, 58.	2.8	64
34	Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons. Development (Cambridge), 2012, 139, 591-600.	2.5	54
35	Monitoring neural activity with bioluminescence during natural behavior. Nature Neuroscience, 2010, 13, 513-520.	14.8	187
36	Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation. Science, 2010, 327, 348-351.	12.6	681

#	Article	lF	CITATIONS
37	Zebrafish TRPA1 Channels Are Required for Chemosensation But Not for Thermosensation or Mechanosensory Hair Cell Function. Journal of Neuroscience, 2008, 28, 10102-10110.	3.6	153
38	Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish. Journal of Neuroscience, 2006, 26, 13400-13410.	3.6	430