Qingjie Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922900/publications.pdf Version: 2024-02-01

OINCHE SUN

#	Article	IF	CITATIONS
1	Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products, 2016, 87, 182-190.	2.5	208
2	Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chemistry, 2014, 162, 223-228.	4.2	202
3	Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food Chemistry, 2017, 234, 339-347.	4.2	202
4	Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chemistry, 2015, 174, 82-88.	4.2	161
5	Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chemistry, 2014, 145, 756-764.	4.2	157
6	Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydrate Polymers, 2014, 110, 128-134.	5.1	150
7	Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydrate Polymers, 2015, 121, 155-162.	5.1	147
8	Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Industrial Crops and Products, 2016, 83, 346-352.	2.5	142
9	Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. Journal of Hazardous Materials, 2021, 402, 123542.	6.5	140
10	Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydrate Polymers, 2016, 147, 372-378.	5.1	138
11	Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films. Carbohydrate Polymers, 2013, 98, 630-637.	5.1	106
12	Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chemistry, 2017, 221, 1426-1433.	4.2	103
13	Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT - Food Science and Technology, 2016, 69, 251-257.	2.5	99
14	Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chemistry, 2018, 242, 256-263.	4.2	99
15	Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance. Food Chemistry, 2016, 199, 356-363.	4.2	95
16	Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocolloids, 2019, 87, 29-37.	5.6	91
17	Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles. Carbohydrate Polymers, 2014, 111, 133-138.	5.1	89
18	Bioactive and intelligent starch-based films: A review. Trends in Food Science and Technology, 2021, 116, 854-869.	7.8	86

#	Article	IF	CITATIONS
19	Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release. Food Hydrocolloids, 2017, 67, 14-26.	5.6	85
20	Double Cross-Linked Chitosan Composite Films Developed with Oxidized Tannic Acid and Ferric Ions Exhibit High Strength and Excellent Water Resistance. Biomacromolecules, 2019, 20, 801-812.	2.6	85
21	Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch. LWT - Food Science and Technology, 2016, 74, 303-310.	2.5	84
22	Gallic acid liposomes decorated with lactoferrin: Characterization, in vitro digestion and antibacterial activity. Food Chemistry, 2019, 293, 315-322.	4.2	81
23	Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocolloids, 2018, 75, 1-12.	5.6	78
24	Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions. Journal of Functional Foods, 2016, 26, 632-644.	1.6	76
25	Preparation of Bioactive Polysaccharide Nanoparticles with Enhanced Radical Scavenging Activity and Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 2018, 66, 4373-4383.	2.4	76
26	Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydrate Polymers, 2014, 106, 359-364.	5.1	70
27	Purification and identification of antioxidant peptides from peanut protein isolate hydrolysates using UHR-Q-TOF mass spectrometer. Food Chemistry, 2014, 161, 148-154.	4.2	68
28	Functional and pasting properties of pea starch and peanut protein isolate blends. Carbohydrate Polymers, 2014, 101, 1134-1139.	5.1	66
29	Morphology and Characteristics of Starch Nanoparticles Self-Assembled via a Rapid Ultrasonication Method for Peppermint Oil Encapsulation. Journal of Agricultural and Food Chemistry, 2017, 65, 8363-8373.	2.4	63
30	Effect of dry heating with ionic gums on physicochemical properties of starch. Food Chemistry, 2013, 136, 1421-1425.	4.2	61
31	Self-healing, stretchable, and freezing-resistant hydroxypropyl starch-based double-network hydrogels. Carbohydrate Polymers, 2021, 251, 116982.	5.1	61
32	Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydrate Polymers, 2017, 173, 223-232.	5.1	61
33	Enhanced antibacterial activity of lysozyme immobilized on chitin nanowhiskers. Food Chemistry, 2017, 221, 1507-1513.	4.2	60
34	Construction of food-grade pH-sensitive nanoparticles for delivering functional food ingredients. Trends in Food Science and Technology, 2020, 96, 102-113.	7.8	60
35	The effect of heat moisture treatment on physicochemical properties of early indica rice. Food Chemistry, 2013, 141, 853-857.	4.2	59
36	Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocolloids, 2019, 89, 396-405.	5.6	59

#	Article	IF	CITATIONS
37	Effects of heat moisture treatment on the physicochemical properties of starch nanoparticles. Carbohydrate Polymers, 2015, 117, 605-609.	5.1	57
38	Acetylated debranched starch micelles as a promising nanocarrier for curcumin. Food Hydrocolloids, 2021, 111, 106253.	5.6	57
39	Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin. Food Hydrocolloids, 2017, 73, 74-89.	5.6	56
40	Effects of chitin nano-whiskers on the gelatinization and retrogradation of maize and potato starches. Food Chemistry, 2017, 214, 543-549.	4.2	56
41	Formation of Protein Corona on Nanoparticles with Digestive Enzymes in Simulated Gastrointestinal Fluids. Journal of Agricultural and Food Chemistry, 2019, 67, 2296-2306.	2.4	56
42	A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols. Food Chemistry, 2016, 213, 579-587.	4.2	55
43	<i>In vitro</i> inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles. Food and Function, 2018, 9, 355-363.	2.1	55
44	Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature. International Journal of Biological Macromolecules, 2016, 84, 354-360.	3.6	54
45	Green preparation and characterization of starch nanoparticles using a vacuum cold plasma process combined with ultrasonication treatment. Ultrasonics Sonochemistry, 2019, 58, 104660.	3.8	54
46	Preparation of a Strong Gelatin–Short Linear Glucan Nanocomposite Hydrogel by an in Situ Self-Assembly Process. Journal of Agricultural and Food Chemistry, 2018, 66, 177-186.	2.4	53
47	Fractionation of debranched starch with different molecular weights via edible alcohol precipitation. Food Hydrocolloids, 2018, 83, 430-437.	5.6	53
48	Enhanced viability of layer-by-layer encapsulated Lactobacillus pentosus using chitosan and sodium phytate. Food Chemistry, 2019, 285, 260-265.	4.2	52
49	Preparation of Borax Cross-Linked Starch Nanoparticles for Improvement of Mechanical Properties of Maize Starch Films. Journal of Agricultural and Food Chemistry, 2019, 67, 2916-2925.	2.4	52
50	Development of chitosan-sodium phytate nanoparticles as a potent antibacterial agent. Carbohydrate Polymers, 2017, 178, 311-321.	5.1	51
51	Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content. Food Chemistry, 2018, 245, 481-487.	4.2	51
52	Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking. Carbohydrate Polymers, 2020, 246, 116586.	5.1	51
53	Preparation and Characterization of Octenyl Succinic Anhydride Modified Taro Starch Nanoparticles. PLoS ONE, 2016, 11, e0150043.	1.1	50
54	Characterization of edible corn starch nanocomposite films: The effect of selfâ€assembled starch nanoparticles. Starch/Staerke, 2016, 68, 239-248.	1.1	49

#	Article	IF	CITATIONS
55	Starchâ€based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1075-1100.	5.9	49
56	Evaluation of rheological behavior of starch nanocrystals by acid hydrolysis and starch nanoparticles by self-assembly: A comparative study. Food Hydrocolloids, 2016, 52, 914-922.	5.6	48
57	Rheological properties and microstructure characterization of normal and waxy corn starch dry heated with soy protein isolate. Food Hydrocolloids, 2015, 48, 1-7.	5.6	47
58	Relationship between the emulsifying properties and formation time of rice bran protein fibrils. LWT - Food Science and Technology, 2020, 122, 108985.	2.5	47
59	Characterization of Corn Starch Films Reinforced with CaCO3 Nanoparticles. PLoS ONE, 2014, 9, e106727.	1.1	46
60	Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocolloids, 2020, 104, 105760.	5.6	46
61	Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. International Journal of Biological Macromolecules, 2022, 205, 419-429.	3.6	46
62	Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydrate Polymers, 2022, 291, 119624.	5.1	45
63	Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. Food Chemistry, 2016, 192, 865-872.	4.2	44
64	Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control. Journal of Materials Chemistry B, 2018, 6, 7834-7841.	2.9	44
65	Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier. Food Chemistry, 2021, 358, 129840.	4.2	44
66	Differences in physicochemical, morphological, and structural properties between rice starch and rice flour modified by dry heat treatment. Starch/Staerke, 2015, 67, 756-764.	1.1	43
67	Coordination of Covalent Cross-Linked Gelatin Hydrogels via Oxidized Tannic Acid and Ferric Ions with Strong Mechanical Properties. Journal of Agricultural and Food Chemistry, 2019, 67, 11489-11497.	2.4	41
68	Glucose-responsive biopolymer nanoparticles prepared by co-assembly of concanavalin A and amylopectin for insulin delivery. Industrial Crops and Products, 2018, 112, 98-104.	2.5	40
69	Effect of annealing on the structural and physicochemical properties of waxy rice starch nanoparticles. Food Chemistry, 2019, 286, 17-21.	4.2	39
70	Effect of heat moisture treatment on physicochemical and morphological properties of wheat starch and xylitol mixture. Food Chemistry, 2014, 143, 54-59.	4.2	38
71	The effect of peanut protein nanoparticles on characteristics of protein- and starch-based nanocomposite films: A comparative study. Industrial Crops and Products, 2015, 77, 565-574.	2.5	37
72	Fabrication and Characterization of Starch Nanohydrogels via Reverse Emulsification and Internal Gelation. Journal of Agricultural and Food Chemistry, 2018, 66, 9326-9334.	2.4	37

#	Article	IF	CITATIONS
73	Preparation of crosslinked active bilayer film based on chitosan and alginate for regulating ascorbate-glutathione cycle of postharvest cherry tomato (Lycopersicon esculentum). International Journal of Biological Macromolecules, 2019, 130, 584-594.	3.6	36
74	High-Strength Physically Multi-Cross-Linked Chitosan Hydrogels and Aerogels for Removing Heavy-Metal Ions. Journal of Agricultural and Food Chemistry, 2019, 67, 13648-13657.	2.4	36
75	Properties of curcumin-loaded zein-tea saponin nanoparticles prepared by antisolvent co-precipitation and precipitation. Food Chemistry, 2022, 391, 133224.	4.2	36
76	Effect of acid hydrolysis combined with heat moisture treatment on structure and physicochemical properties of corn starch. Journal of Food Science and Technology, 2015, 52, 375-382.	1.4	35
77	Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT - Food Science and Technology, 2016, 74, 311-318.	2.5	35
78	Effect of microwave-assisted dry heating with xanthan on normal and waxy corn starches. International Journal of Biological Macromolecules, 2014, 68, 86-91.	3.6	34
79	Physicochemical properties of maize and sweet potato starches in the presence of cellulose nanocrystals. Food Hydrocolloids, 2018, 77, 220-227.	5.6	34
80	Preparation of octenyl succinic anhydride-modified debranched starch vesicles for loading of hydrophilic functional ingredients. Food Hydrocolloids, 2019, 94, 546-552.	5.6	34
81	Synthesis and study the properties of StNPs/gum nanoparticles for salvianolic acid B-oral delivery system. Food Chemistry, 2017, 229, 111-119.	4.2	33
82	Effects of anionic polysaccharides on the digestion of fish oil-in-water emulsions stabilized by hydrolyzed rice glutelin. Food Research International, 2020, 127, 108768.	2.9	33
83	Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. International Journal of Biological Macromolecules, 2020, 161, 481-491.	3.6	33
84	Gelatinization, pasting, and rheological properties of pea starch in alcohol solution. Food Hydrocolloids, 2021, 112, 106331.	5.6	33
85	Inhibitory effects of sorbitol on the collapse and deterioration of gluten network in fresh noodles during storage. Food Chemistry, 2021, 344, 128638.	4.2	33
86	Characterization and antioxidant activity of short linear glucan–lysine nanoparticles prepared by Maillard reaction. Food Hydrocolloids, 2019, 92, 86-93.	5.6	32
87	Fabrication and characterization of starch beads formed by a dispersion-inverse gelation process for loading polyphenols with improved antioxidation. Food Hydrocolloids, 2020, 101, 105565.	5.6	31
88	Characterization of complexes formed between debranched starch and fatty acids having different carbon chain lengths. International Journal of Biological Macromolecules, 2021, 167, 595-604.	3.6	31
89	Characterization of Cationic Modified Debranched Starch and Formation of Complex Nanoparticles with κ-Carrageenan and Low Methoxyl Pectin. Journal of Agricultural and Food Chemistry, 2019, 67, 2906-2915.	2.4	30
90	The formation of starch-lipid complexes by microwave heating. Food Chemistry, 2022, 382, 132319.	4.2	30

#	Article	IF	CITATIONS
91	Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends in Food Science and Technology, 2021, 114, 386-398.	7.8	28
92	InÂvitro digestion of nanoscale starch particles and evolution of thermal, morphological, and structural characteristics. Food Hydrocolloids, 2016, 61, 344-350.	5.6	27
93	Oxidation modification of debranched starch for the preparation of starch nanoparticles with calcium ions. Food Hydrocolloids, 2018, 85, 86-92.	5.6	27
94	Separation and characterization of linear glucans debranched from normal corn, potato and sweet potato starches. Food Hydrocolloids, 2019, 89, 196-206.	5.6	27
95	Rapid production of corn starch gels with high mechanical properties through alcohol soaking. International Journal of Biological Macromolecules, 2020, 163, 1557-1564.	3.6	27
96	The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism. Food and Function, 2016, 7, 4804-4815.	2.1	26
97	Retrogradation property of starch nanoparticles prepared by pullulanase and recrystallization. Starch/Staerke, 2016, 68, 230-238.	1.1	26
98	Morphology and Structural Properties of Novel Short Linear Glucan/Protein Hybrid Nanoparticles and Their Influence on the Rheological Properties of Starch Gel. Journal of Agricultural and Food Chemistry, 2017, 65, 7955-7965.	2.4	26
99	Characterization and in vitro digestibility of potato starch encapsulated in calcium alginate beads. Food Hydrocolloids, 2022, 126, 107458.	5.6	26
100	Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment. PLoS ONE, 2016, 11, e0160371.	1.1	25
101	Effects of four polyphenols loading on the attributes of lipid bilayers. Journal of Food Engineering, 2020, 282, 110008.	2.7	25
102	Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities. International Journal of Biological Macromolecules, 2021, 180, 510-522.	3.6	25
103	The formation of a protein corona and the interaction with α-amylase by chitin nanowhiskers in simulated saliva fluid. Food Hydrocolloids, 2020, 102, 105615.	5.6	24
104	Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment. Food Chemistry, 2018, 245, 756-760.	4.2	24
105	Effect of molecular weight on the interfacial and emulsifying characteristics of rice glutelin hydrolysates. Food Hydrocolloids, 2022, 128, 107560.	5.6	24
106	Interaction between soybean oleosome-associated proteins and phospholipid bilayer and its influence on environmental stability of luteolin-loaded liposomes. Food Hydrocolloids, 2022, 130, 107721.	5.6	24
107	Interactions of Surface-Functionalized Starch Nanoparticles with Pepsin and Trypsin in Simulated Gastrointestinal Fluids. Journal of Agricultural and Food Chemistry, 2020, 68, 10174-10183.	2.4	23
108	The Pasting and Gel Textural Properties of Corn Starch in Glucose, Fructose and Maltose Syrup. PLoS ONE, 2014, 9, e95862.	1.1	23

#	Article	IF	CITATIONS
109	Effect of sugar alcohol on physicochemical properties of wheat starch. Starch/Staerke, 2014, 66, 788-794.	1.1	22
110	Preparation of Hollow Biopolymer Nanospheres Employing Starch Nanoparticle Templates for Enhancement of Phenolic Acid Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2017, 65, 3868-3882.	2.4	22
111	Horseradish peroxidase-mediated synthesis of an antioxidant gallic acid- <i>g</i> -chitosan derivative and its preservation application in cherry tomatoes. RSC Advances, 2018, 8, 20363-20371.	1.7	22
112	Development of Self-Healing Double-Network Hydrogels: Enhancement of the Strength of Wheat Gluten Hydrogels by <i>In Situ</i> Metal–Catechol Coordination. Journal of Agricultural and Food Chemistry, 2019, 67, 6508-6516.	2.4	22
113	An Enhanced Stability Nanoparticle Preparation by Corn Protein Hydrolysateâ€Carboxymethyl Chitosan Maillard Conjugates Loaded with Rutin. Journal of Food Science, 2019, 84, 1829-1835.	1.5	22
114	Preparation and characterization of waxy maize starch nanocrystals with a high yield via dry-heated oxalic acid hydrolysis. Food Chemistry, 2020, 318, 126479.	4.2	22
115	The combination of starch nanoparticles and Tween 80 results in enhanced emulsion stability. International Journal of Biological Macromolecules, 2020, 163, 2048-2059.	3.6	21
116	Chitosan–Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies. Journal of Agricultural and Food Chemistry, 2018, 66, 6104-6115.	2.4	20
117	Optimization of the preparation conditions of thermo-sensitive chitosan hydrogel in heterogeneous reaction using response surface methodology. International Journal of Biological Macromolecules, 2019, 121, 293-300.	3.6	20
118	Interactions between debranched starch and emulsifiers, polyphenols, and fatty acids. International Journal of Biological Macromolecules, 2020, 150, 644-653.	3.6	20
119	Aggregation of Fucoxanthin and Its Effects on Binding and Delivery Properties of Whey Proteins. Journal of Agricultural and Food Chemistry, 2019, 67, 10412-10422.	2.4	19
120	Inhibition of normal and waxy corn starch retrogradation by sodium borohydride. International Journal of Biological Macromolecules, 2020, 153, 341-348.	3.6	19
121	Retrogradation behavior of debranched starch with different degrees of polymerization. Food Chemistry, 2019, 297, 125001.	4.2	18
122	Delineating the dynamic transformation of gluten morphological distribution, structure, and aggregation behavior in noodle dough induced by mixing and resting. Food Chemistry, 2022, 386, 132853.	4.2	18
123	Effect of food gums on properties of pea starch and vermicelli prepared from pea starch. Starch/Staerke, 2015, 67, 399-406.	1.1	17
124	Effects of different isolation methods on the physicochemical properties of pea starch and textural properties of vermicelli. Journal of Food Science and Technology, 2015, 52, 327-334.	1.4	17
125	Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization. International Journal of Biological Macromolecules, 2020, 155, 598-604.	3.6	17
126	Comparison of Lutein Bioaccessibility from Dietary Supplement-Excipient Nanoemulsions and Nanoemulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2021, 69, 13925-13932.	2.4	17

#	Article	IF	CITATIONS
127	Calcium alginate/curdlan/corn starch@calcium alginate macrocapsules for slowly digestible and resistant starch. Carbohydrate Polymers, 2022, 285, 119259.	5.1	17
128	Preparation and Characterization of Tadpole- and Sphere-Shaped Hemin Nanoparticles for Enhanced Solubility. Nanoscale Research Letters, 2019, 14, 47.	3.1	16
129	Interaction of food-grade titanium dioxide nanoparticles with pepsin in simulated gastric fluid. LWT - Food Science and Technology, 2020, 134, 110208.	2.5	16
130	Fabrication and characterization of walnut peptides-loaded proliposomes with three lyoprotectants: Environmental stabilities and antioxidant/antibacterial activities. Food Chemistry, 2022, 366, 130643.	4.2	16
131	Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum. LWT - Food Science and Technology, 2022, 154, 112572.	2.5	16
132	Interaction of bovine serum albumin with starch nanoparticles prepared by TEMPO-mediated oxidation. International Journal of Biological Macromolecules, 2015, 78, 333-338.	3.6	15
133	Preparation of a superhydrophilic SiO2 nanoparticles coated chitosan-sodium phytate film by a simple ethanol soaking process. Carbohydrate Polymers, 2021, 271, 118422.	5.1	15
134	Effect of xylitol on wheat dough properties and bread characteristics. International Journal of Food Science and Technology, 2014, 49, 1159-1167.	1.3	14
135	Effect of the Amount and Particle Size of Wheat Fiber on the Physicochemical Properties and Gel Morphology of Starches. PLoS ONE, 2015, 10, e0128665.	1.1	14
136	Effect of chitosan on the antibacterial and physical properties of corn starch nanocomposite films. Starch/Staerke, 2017, 69, 1600114.	1.1	14
137	Current knowledge in the stabilization/destabilization of infant formula emulsions during processing as affected by formulations. Trends in Food Science and Technology, 2021, 109, 435-447.	7.8	14
138	Characterization of Maillard reaction products micro/nano-particles present in fermented soybean sauce and vinegar. Scientific Reports, 2019, 9, 11285.	1.6	13
139	Resveratrol-loaded hollow kafirin nanoparticles via gallic acid crosslinking: An evaluation compared with their solid and non-crosslinked counterparts. Food Research International, 2020, 135, 109308.	2.9	13
140	Hydroxypropyl methylcellulose hydrocolloid systems: Effect of hydroxypropy group content on the phase structure, rheological properties and film characteristics. Food Chemistry, 2022, 379, 132075.	4.2	13
141	Study on the interaction between bovine serum albumin and starch nanoparticles prepared by isoamylolysis and recrystallization. Colloids and Surfaces B: Biointerfaces, 2015, 128, 594-599.	2.5	12
142	Preparation of active polysaccharide-loaded maltodextrin nanoparticles and their stability as a function of ionic strength and pH. LWT - Food Science and Technology, 2017, 76, 164-171.	2.5	12
143	pH-Sensitive Chitosan–Sodium Phytate Core–Shell Hollow Beads and Nanocapsules for the Encapsulation of Active Ingredients. Journal of Agricultural and Food Chemistry, 2019, 67, 2894-2905. ————————————————————————————————————	2.4	12
144	Fabrication and characterization of hollow starch nanoparticles by heterogeneous crystallization of debranched starch in a nanoemulsion system. Food Chemistry, 2020, 323, 126851.	4.2	12

#	Article	IF	CITATIONS
145	Anti-freezing starch hydrogels with superior mechanical properties and water retention ability for 3D printing. International Journal of Biological Macromolecules, 2021, 190, 382-389.	3.6	12
146	Green preparation of debranched starch nanoparticles with different crystalline structures by electrostatic spraying. Food Hydrocolloids, 2022, 127, 107513.	5.6	12
147	Differences in rheological behavior between normal and waxy corn starches modified by dry heating with hydrocolloids. Starch/Staerke, 2017, 69, 1600332.	1.1	11
148	Starch Nanoparticles. , 2018, , 691-745.		11
149	The effect of ethanol solution annealing on the physicochemical properties of pea and potato starches. Food Hydrocolloids, 2022, 125, 107428.	5.6	11
150	Effect of heat-moisture treatment with maltitol on physicochemical properties of wheat starch. LWT - Food Science and Technology, 2015, 62, 319-324.	2.5	10
151	Preparation and characterization of redox-sensitive glutenin nanoparticles. International Journal of Biological Macromolecules, 2019, 137, 327-336.	3.6	10
152	Preparation and characterization of waxy maize starch nanoparticles via hydrochloric acid vapor hydrolysis combined with ultrasonication treatment. Ultrasonics Sonochemistry, 2021, 80, 105836.	3.8	10
153	Emulsification and dilatational surface rheology of ultrasonicated milk fat globule membrane (MFGM) materials. LWT - Food Science and Technology, 2020, 133, 110094.	2.5	9
154	Improved stability of liposome-stabilized emulsions as a co-encapsulation delivery system for vitamin B ₂ , vitamin E and β-carotene. Food and Function, 2022, 13, 2966-2984.	2.1	9
155	Formation of protein corona on interaction of pepsin with chitin nanowhiskers in simulated gastric fluid. Food Chemistry, 2022, 383, 132393.	4.2	9
156	Dual Cross-Linked Starch–Borax Double Network Hydrogels with Tough and Self-Healing Properties. Foods, 2022, 11, 1315.	1.9	9
157	Synergistic effect of glycerol and ionic strength on the rheological behavior of cellulose nanocrystals suspension system. International Journal of Biological Macromolecules, 2017, 102, 1073-1082.	3.6	8
158	Versatile wheat gluten: functional properties and application in the food-related industry. Critical Reviews in Food Science and Nutrition, 2023, 63, 10444-10460.	5.4	8
159	Effects of food-grade inorganic nanoparticles on the probiotic properties of Lactobacillus plantarum and Lactobacillus fermentum. LWT - Food Science and Technology, 2021, 139, 110540.	2.5	7
160	Effects of heat moisture treatment with erythritol on the physicochemical properties of wheat starch. Starch/Staerke, 2014, 66, 496-501.	1.1	6
161	Evaluation of the Storage Stability and Quality Properties of Fresh Noodles Mixed with Plasma-Activated Water. Foods, 2022, 11, 133.	1.9	6
162	Improved protective and controlled releasing effect of fish oil microcapsules with rice bran protein fibrils and xanthan gum as wall materials. Food and Function, 2022, 13, 4734-4747.	2.1	5

#	Article	IF	CITATIONS
163	Construction and Characterization of Phthalocyanine-Loaded Particles of Curdlan and Their Photosensitivity. International Journal of Molecular Sciences, 2018, 19, 3323.	1.8	4
164	Preparation of highly purified ω-3 docosapentaenoic acid from seal oil via urea complexation combined with preparative high performance liquid chromatography. Separation Science and Technology, 2021, 56, 1769-1778.	1.3	4
165	Formation and characterization of debranched starch–alcohol complexes with six aliphatic alcohols. LWT - Food Science and Technology, 2021, 140, 110805.	2.5	4
166	The synergistic effect of glycerol and sodium chloride on the degree of chitin nano-whisker gels reinforcement. Colloid and Polymer Science, 2017, 295, 1643-1654.	1.0	3
167	Gelatinizing Starch in Sodium Hydroxide/Glycerol Aqueous Solution at Room Temperature. Starch/Staerke, 2021, 73, 2000152.	1.1	3
168	Evolution of Physicochemical Properties, Phenolic Acid Accumulation, and Dough-Making Quality of Whole Wheat Flour During Germination Under UV-B Radiation. Frontiers in Nutrition, 2022, 9, 877324.	1.6	2
169	Efficient preparation of cellulose nanocrystals with a high yield through simultaneous acidolysis with a heat–moisture treatment. Food Chemistry, 2022, 391, 133285.	4.2	2
170	Inhibition of Longâ€Term Retrogradation of Corn, Potato, and Pea Starches by Borax. Starch/Staerke, 2021, 73, 2000045.	1.1	1
171	Emulsion-Based Formulations for Delivery of Vitamin E: Fabrication, Characterization, <i>in Vitro</i> Release, Bioaccessibility and Bioavailability. Food Reviews International, 2023, 39, 3283-3300.	4.3	0