Margret Sauter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922693/publications.pdf

Version: 2024-02-01

57	5,146	38	58
papers	citations	h-index	g-index
63	63	63	4873
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. Plants, 2022, 11, 205.	3.5	24
2	Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. Journal of Experimental Botany, 2021, 72, 3427-3440.	4.8	39
3	Tyrosylprotein sulfotransferase-dependent and -independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis. Journal of Experimental Botany, 2021, 72, 5508-5521.	4.8	11
4	Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist, 2021, 229, 42-49.	7. 3	134
5	Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice. Journal of Experimental Botany, 2021, 72, 1879-1890.	4.8	16
6	Control of root system architecture by phytohormones and environmental signals in rice. Israel Journal of Plant Sciences, 2020, 67, 98-109.	0.5	8
7	Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in <i>Arabidopsis</i> Plant Biology, 2019, 21, 103-108.	3.8	43
8	Sulfated plant peptide hormones. Journal of Experimental Botany, 2019, 70, 4267-4277.	4.8	67
9	Polar Auxin Transport Determines Adventitious Root Emergence and Growth in Rice. Frontiers in Plant Science, 2019, 10, 444.	3.6	48
10	Control of Adventitious Root Architecture in Rice by Darkness, Light, and Gravity. Plant Physiology, 2018, 176, 1352-1364.	4.8	46
11	A stress recovery signaling network for enhanced flooding tolerance in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6085-E6094.	7.1	140
12	Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.	7. 3	146
13	Phosphorylation of the phytosulfokine peptide receptor PSKR1 controls receptor activity. Journal of Experimental Botany, 2017, 68, 1411-1423.	4.8	16
14	Pull-down Assay to Characterize Ca2+/Calmodulin Binding to Plant Receptor Kinases. Methods in Molecular Biology, 2017, 1621, 151-159.	0.9	4
15	BiFC Assay to Detect Calmodulin Binding to Plant Receptor Kinases. Methods in Molecular Biology, 2017, 1621, 141-149.	0.9	3
16	Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. Plant Physiology, 2017, 175, 412-423.	4.8	87
17	Conserved phosphorylation sites in the activation loop of the <i>Arabidopsis</i> phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity. Biochemical Journal, 2015, 472, 379-391.	3.7	20
18	Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H ⁺ -ATPase, and BAK1. Plant Cell, 2015, 27, 1718-1729.	6.6	191

#	Article	IF	Citations
19	Phytosulfokine peptide signalling. Journal of Experimental Botany, 2015, 66, 5161-5169.	4.8	131
20	Phytosulfokine peptide signaling controls pollen tube growth and funicular pollen tube guidance in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2015, 153, 643-653.	5.2	59
21	The PSI family of nuclear proteins is required for growth in arabidopsis. Plant Molecular Biology, 2014, 86, 289-302.	3.9	13
22	Role of Ethylene and Other Plant Hormones in Orchestrating the Responses to Low Oxygen Conditions. Plant Cell Monographs, 2014, , 117-132.	0.4	7
23	Kinase activity and calmodulin binding are essential for growth signaling by the phytosulfokine receptor <scp>PSKR</scp> 1. Plant Journal, 2014, 78, 192-202.	5.7	54
24	Root responses to flooding. Current Opinion in Plant Biology, 2013, 16, 282-286.	7.1	236
25	Phytosulfokine control of growth occurs in the epidermis, is likely to be nonâ€cell autonomous and is dependent on brassinosteroids. Plant Journal, 2013, 73, 579-590.	5.7	57
26	<i>S</i> à€adenosylâ€≺scp>lâ€methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiologia Plantarum, 2013, 148, 176-188.	5.2	61
27	Methionine salvage and <i>S</i> -adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochemical Journal, 2013, 451, 145-154.	3.7	298
28	Emerging Roots Alter Epidermal Cell Fate through Mechanical and Reactive Oxygen Species Signaling. Plant Cell, 2012, 24, 3296-3306.	6.6	145
29	Recycling of Methylthioadenosine Is Essential for Normal Vascular Development and Reproduction in Arabidopsis Â. Plant Physiology, 2012, 158, 1728-1744.	4.8	35
30	Targeted Systems Biology Profiling of Tomato Fruit Reveals Coordination of the Yang Cycle and a Distinct Regulation of Ethylene Biosynthesis during Postclimacteric Ripening Â. Plant Physiology, 2012, 160, 1498-1514.	4.8	104
31	Aerenchyma formation in the rice stem and its promotion by H ₂ O ₂ . New Phytologist, 2011, 190, 369-378.	7.3	199
32	The hypoxia responsive transcription factor genes <i>ERF71/HRE2</i> and <i>ERF73/HRE1</i> of <i>Arabidopsis</i> are differentially regulated by ethylene. Physiologia Plantarum, 2011, 143, 41-49.	5.2	73
33	Phytosulfokine-α Controls Hypocotyl Length and Cell Expansion in Arabidopsis thaliana through Phytosulfokine Receptor 1. PLoS ONE, 2011, 6, e21054.	2.5	85
34	Inhibition of 5'-methylthioadenosine metabolism in the Yang cycle alters polyamine levels, and impairs seedling growth and reproduction in Arabidopsis. Plant Journal, 2010, 62, no-no.	5.7	47
35	A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiologia Plantarum, 2010, 139, no-no.	5.2	42
36	Arabidopsis (i>RAP2.2 (i>: An Ethylene Response Transcription Factor That Is Important for Hypoxia Survival Â. Plant Physiology, 2010, 153, 757-772.	4.8	293

#	Article	IF	Citations
37	Epidermal Cell Death in Rice Is Confined to Cells with a Distinct Molecular Identity and Is Mediated by Ethylene and H2O2 through an Autoamplified Signal Pathway. Plant Cell, 2009, 21, 184-196.	6.6	174
38	A guided tour: Pollen tube orientation in flowering plants. Science Bulletin, 2009, 54, 2376-2382.	1.7	8
39	PSKâ€Î± promotes root growth in Arabidopsis. New Phytologist, 2009, 181, 820-831.	7.3	136
40	Ethylene biosynthesis and signaling in rice. Plant Science, 2008, 175, 32-42.	3.6	99
41	OsMTN encodes a 5′-methylthioadenosine nucleosidase that is up-regulated during submergence-induced ethylene synthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58, 1505-1514.	4.8	40
42	The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant Journal, 2007, 49, 238-249.	5.7	124
43	Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta, 2006, 223, 604-612.	3.2	214
44	The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant Journal, 2005, 44, 718-729.	5.7	75
45	Phytosulphokine gene regulation during maize (Zea mays L.) reproduction*. Journal of Experimental Botany, 2005, 56, 1805-1819.	4.8	35
46	Epidermal Cell Death in Rice Is Regulated by Ethylene, Gibberellin, and Abscisic Acid. Plant Physiology, 2005, 139, 713-721.	4.8	129
47	Functional Analysis of Methylthioribose Kinase Genes in Plants. Plant Physiology, 2004, 136, 4061-4071.	4.8	50
48	Plant-specific regulation of replication protein $i_2^{1/2}A2$ (OsRPA2) from rice during the cell cycle and in response to ultraviolet light exposure. Planta, 2003, 217, 457-465.	3.2	17
49	The Rice Cyclin-Dependent Kinase –Activating Kinase R2 Regulates S-Phase Progression. Plant Cell, 2002, 14, 197-210.	6.6	42
50	Comparative analysis of PSK peptide growth factor precursor homologs. Plant Science, 2002, 163, 321-332.	3.6	50
51	The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. Journal of Cell Science, 2002, 115, 2423-31.	2.0	107
52	Rice in deep water: "How to take heed against a sea of troubles". Die Naturwissenschaften, 2000, 87, 289-303.	1.6	93
53	Ethylene Induces Epidermal Cell Death at the Site of Adventitious Root Emergence in Rice. Plant Physiology, 2000, 124, 609-614.	4.8	217
54	Adventitious Root Growth and Cell-Cycle Induction in Deepwater Rice1. Plant Physiology, 1999, 119, 21-30.	4.8	235

#	Article	IF	CITATIONS
55	Induction of cell growth and cell division in the intercalary meristem of submerged deepwater rice () Tj ETQq $1\ 1\ 0$	0.7 <u>84</u> 314	rgBT Overlo
56	Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant Journal, 1997, 11, 181-190.	5.7	126
57	Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant Journal, 1995, 7, 623-632.	5.7	141