Amanda Jezek Martinot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature, 2022, 601, 410-414.	13.7	71
2	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	4.7	27
3	Vaccine protection against the SARS-CoV-2 Omicron variant in macaques. Cell, 2022, 185, 1549-1555.e11.	13.5	59
4	Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters. Med, 2022, 3, 262-268.e4.	2.2	117
5	Ad26.COV2.S prevents upregulation of SARS-CoV-2 induced pathways of inflammation and thrombosis in hamsters and rhesus macaques. PLoS Pathogens, 2022, 18, e1009990.	2.1	4
6	Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Veterinary Pathology, 2022, , 030098582210957.	0.8	2
7	Plasma Proteomics of COVID-19–Associated Cardiovascular Complications. JACC Basic To Translational Science, 2022, 7, 425-441.	1.9	17
8	Special focus on SARS-CoV-2 and other zoonotic respiratory coronaviruses in animal models. Veterinary Pathology, 2022, 59, 513-515.	0.8	0
9	Feasibility and safety of ultrasound-guided minimally invasive autopsy in COVID-19 patients. Abdominal Radiology, 2021, 46, 1263-1271.	1.0	33
10	Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature, 2021, 596, 423-427.	13.7	40
11	Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell, 2021, 184, 3467-3473.e11.	13.5	49
12	Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj3789.	5.8	32
13	Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Science Translational Medicine, 2021, 13, eabj2641.	5.8	15
14	Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection. JCI Insight, 2021, 6, .	2.3	8
15	Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell, 2020, 183, 1354-1366.e13.	13.5	184
16	Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nature Medicine, 2020, 26, 1694-1700.	15.2	275
17	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	6.0	789
18	Protective efficacy of an attenuated Mtb ΔLprG vaccine in mice. PLoS Pathogens, 2020, 16, e1009096.	2.1	12

#	Article	IF	CITATIONS
19	Adenovirus Vector-Based Vaccines Confer Maternal-Fetal Protection against Zika Virus Challenge in Pregnant IFN-αβRâ^'/â^' Mice. Cell Host and Microbe, 2019, 26, 591-600.e4.	5.1	26
20	Adenovirus Vector Vaccination Impacts NK Cell Rheostat Function following Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2018, 92, .	1.5	7
21	Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell, 2018, 173, 1111-1122.e10.	13.5	104
22	Microbial Offense vs Host Defense: Who Controls the TB Granuloma?. Veterinary Pathology, 2018, 55, 14-26.	0.8	24
23	Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation. ELife, 2018, 7, .	2.8	25
24	High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. ELife, 2018, 7, .	2.8	45
25	Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys. Cell, 2017, 169, 610-620.e14.	13.5	191
26	Regulation of <scp>CD</scp> 4 T cells and their effects on immunopathological inflammation following viral infection. Immunology, 2017, 152, 328-343.	2.0	16
27	Hepatic immunopathology during occult hepacivirus re-infection. Virology, 2017, 512, 48-55.	1.1	7
28	Metabolic Dysregulation in Hepacivirus Infection of Common Marmosets (Callithrix jacchus). PLoS ONE, 2017, 12, e0170240.	1.1	5
29	Acute Liver Damage Associated with Innate Immune Activation in a Small Nonhuman Primate Model of Hepacivirus Infection. Journal of Virology, 2016, 90, 9153-9162.	1.5	16
30	Acute SIV Infection in Sooty Mangabey Monkeys Is Characterized by Rapid Virus Clearance from Lymph Nodes and Absence of Productive Infection in Germinal Centers. PLoS ONE, 2013, 8, e57785.	1.1	15