Luciana Rossini Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Scientific Reports, 2013, 3, 3399.	1.6	129
2	De Novo Assembly and Transcriptome Analysis of Contrasting Sugarcane Varieties. PLoS ONE, 2014, 9, e88462.	1.1	129
3	Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome, 2004, 47, 795-804.	0.9	113
4	Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theoretical and Applied Genetics, 2006, 112, 298-314.	1.8	101
5	Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding, 2006, 125, 378-384.	1.0	84
6	Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Molecular Breeding, 2007, 20, 189-208.	1.0	79
7	A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theoretical and Applied Genetics, 2012, 124, 835-849.	1.8	73
8	Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Research Notes, 2011, 4, 264.	0.6	51
9	Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica, 2010, 172, 313-327.	0.6	46
10	QTL mapping including codominant SNP markers with ploidy level information in a sugarcane progeny. Euphytica, 2016, 211, 1-16.	0.6	39
11	Genetic-diversity assessed by microsatellites in tropical maize populations submitted to a high-intensity reciprocal recurrent selection. Euphytica, 2003, 134, 277-286.	0.6	31
12	Revisiting Meiosis in Sugarcane: Chromosomal Irregularities and the Prevalence of Bivalent Configurations. Frontiers in Genetics, 2018, 9, 213.	1.1	31
13	Unraveling the genetic structure of Brazilian commercial sugarcane cultivars through microsatellite markers. PLoS ONE, 2018, 13, e0195623.	1.1	30
14	Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech, 2010, 12, 150-154.	0.9	24
15	Gene Duplication in the Sugarcane Genome: A Case Study of Allele Interactions and Evolutionary Patterns in Two Genic Regions. Frontiers in Plant Science, 2019, 10, 553.	1.7	23
16	Genetic variability among sugarcane genotypes based on polymorphisms in sucrose metabolism and drought tolerance genes. Euphytica, 2010, 172, 435-446.	0.6	21
17	Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Scientific Reports, 2021, 11, 15730.	1.6	21
18	Machine learning approaches reveal genomic regions associated with sugarcane brown rust resistance. Scientific Reports, 2020, 10, 20057.	1.6	19

Luciana Rossini Pinto

#	Article	IF	CITATIONS
19	Reciprocal recurrent selection effects on the genetic structure of tropical maize populations assessed at microsatellite loci. Genetics and Molecular Biology, 2003, 26, 355-364.	0.6	18
20	The Wild Sugarcane and Sorghum Kinomes: Insights Into Expansion, Diversification, and Expression Patterns. Frontiers in Plant Science, 2021, 12, 668623.	1.7	18
21	Characterization of the Genetic Variability of a Sugarcane Commercial Cross Through Yield Components and Quality Parameters. Sugar Tech, 2012, 14, 119-125.	0.9	15
22	Influência de métodos de secagem na conservação de sementes de Ipê-branco. Revista Brasileira De Engenharia Agricola E Ambiental, 2001, 5, 492-496.	0.4	14
23	Flowering of Sugarcane Genotypes under Different Artificial Photoperiod Conditions. American Journal of Plant Sciences, 2015, 06, 456-463.	0.3	14
24	Comparison of Two Staining Methods for Pollen Viability Studies in Sugarcane. Sugar Tech, 2013, 15, 103-107.	0.9	13
25	Marker-trait association and epistasis for brown rust resistance in sugarcane. Euphytica, 2015, 203, 533-547.	0.6	13
26	Transcriptomic Analysis of Changes in Gene Expression During Flowering Induction in Sugarcane Under Controlled Photoperiodic Conditions. Frontiers in Plant Science, 2021, 12, 635784.	1.7	13
27	Evaluation of Brazilian sugarcane genotypes for resistance to Sugarcane mosaic virus under greenhouse and field conditions. Crop Protection, 2015, 70, 15-20.	1.0	12
28	DNA methylation in sugarcane somaclonal variants assessed through methylation-sensitive amplified polymorphism. Genetics and Molecular Research, 2017, 16, .	0.3	11
29	Genetic Structure Analysis in Sugarcane (Saccharum spp.) Using Target Region Amplification Polymorphism (TRAP) Markers Based on Sugar- and Lignin-Related Genes and Potential Application in Core Collection Development. Sugar Tech, 2020, 22, 641-654.	0.9	11
30	Survey of the <i>Bru1</i> gene for brown rust resistance in Brazilian local and basic sugarcane germplasm. Plant Breeding, 2017, 136, 182-187.	1.0	10
31	Screening Sugarcane Wild Accessions for Resistance to Sugarcane Mosaic Virus (SCMV). Sugar Tech, 2015, 17, 252-257.	0.9	9
32	Sugarcane Transcript Profiling Assessed by cDNA-AFLP Analysis during the Interaction with <i>Sugarcane Mosaic Virus</i> . Advances in Microbiology, 2014, 04, 511-520.	0.3	9
33	Reference genes for gene expression studies targeting sugarcane infected with Sugarcane mosaic virus (SCMV). BMC Research Notes, 2019, 12, 149.	0.6	8
34	Screening of Saccharum spp. genotypes for sugarcane yellow leaf virus resistance by combining symptom phenotyping and highly precise virus titration. Crop Protection, 2021, 144, 105577.	1.0	8
35	Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes. PLoS ONE, 2020, 15, e0241493.	1.1	8
36	Paternity identification in sugarcane polycrosses by using microsatellite markers. Genetics and Molecular Research, 2014, 13, 2268-2277.	0.3	7

#	Article	IF	CITATIONS
37	Selection and validation of reference genes by RT-qPCR under photoperiodic induction of flowering in sugarcane (Saccharum spp.). Scientific Reports, 2021, 11, 4589.	1.6	7
38	Effect of Sugarcane Cultivars Infected with Sugarcane Yellow Leaf Virus (ScYLV) on Feeding Behavior and Biological Performance of Melanaphis sacchari (Hemiptera: Aphididae). Plants, 2021, 10, 2122.	1.6	5
39	Isoenzymatic variability in tropical maize populations under reciprocal recurrent selection. Scientia Agricola, 2003, 60, 291-297.	0.6	4
40	Selfing rate estimation in sugarcane under unfavorable natural conditions of crossing by using microsatellite markers. Genetics and Molecular Research, 2014, 13, 2278-2289.	0.3	4
41	Efficiency of Different Antimitotics in Cytological Preparations of Sugarcane. Sugar Tech, 2016, 18, 222-228.	0.9	4
42	Marker-trait Association for Resistance to Sugarcane Mosaic Virus (SCMV) in a Sugarcane (Saccharum) Tj ETQqO	0 8.gBT /	Overlock 10
43	New Sugarcane Microsatellites and Target Region Amplification Polymorphism Primers Designed from Candidate Genes Related to Disease Resistance. Sugar Tech, 2017, 19, 219-224.	0.9	3
44	Morphological analysis and DNA methylation in Conyza bonariensis L. cronquist (Asteraceae) phenotypes. Bragantia, 2017, 76, 480-491.	1.3	3

45	Epigenetic diversity of Saccharum spp. accessions assessed by methylation-sensitive amplification polymorphism (MSAP). 3 Biotech, 2020, 10, 265.	1.1	3
46	Taxonomically Restricted Genes Are Associated With Responses to Biotic and Abiotic Stresses in Sugarcane (Saccharum spp.). Frontiers in Plant Science, 0, 13, .	1.7	3
47	Phenotypic and biochemical responses of sugarcane cultivars to glyphosate application. Sugar Tech, 2013, 15, 127-135.	0.9	2
48	GENETIC VARIABILITY OF Rottboellia cochinchinensis POPULATIONS IN SUGARCANE FIELDS. Planta Daninha, 2016, 34, 475-484.	0.5	1
49	Association Mapping for Sugarcane Quality Traits at Three Harvest Times. Sugar Tech, 0, , 1.	0.9	1