Olivier Andréoletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prion disease modelled in Drosophila. Cell and Tissue Research, 2023, 392, 47-62.	2.9	3
2	Porcine Prion Protein as a Paradigm of Limited Susceptibility to Prion Strain Propagation. Journal of Infectious Diseases, 2021, 223, 1103-1112.	4.0	9
3	Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection. PLoS Pathogens, 2021, 17, e1009276.	4.7	12
4	Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients. Acta Neuropathologica, 2021, 141, 383-397.	7.7	16
5	Prion potentiation after life-long dormancy in mice devoid of PrP. Brain Communications, 2021, 3, fcab092.	3.3	9
6	Stability of BSE infectivity towards heat treatment even after proteolytic removal of prion protein. Veterinary Research, 2021, 52, 59.	3.0	2
7	Cerebrospinal Fluid and Plasma Small Extracellular Vesicles and miRNAs as Biomarkers for Prion Diseases. International Journal of Molecular Sciences, 2021, 22, 6822.	4.1	10
8	Prion strains associated with iatrogenic CJD in French and UK human growth hormone recipients. Acta Neuropathologica Communications, 2021, 9, 145.	5.2	7
9	Classical BSE prions emerge from asymptomatic pigs challenged with atypical/Nor98 scrapie. Scientific Reports, 2021, 11, 17428.	3.3	10
10	Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Veterinary Research, 2021, 52, 128.	3.0	12
11	Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Scientific Reports, 2020, 10, 19.	3.3	22
12	Evaluation of an alternative method for production of biodiesel from processed fats derived from Category 1, 2 and 3 animal byâ€products (submitted by College Proteins). EFSA Journal, 2020, 18, e06089.	1.8	3
13	Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice. Emerging Infectious Diseases, 2020, 26, 1130-1139.	4.3	19
14	Prions from Sporadic Creutzfeldt-Jakob Disease Patients Propagate as Strain Mixtures. MBio, 2020, 11, .	4.1	22
15	Prion infection, transmission, and cytopathology modeled in a low-biohazard human cell line. Life Science Alliance, 2020, 3, e202000814.	2.8	7
16	Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures. Transboundary and Emerging Diseases, 2019, 66, 1993-2001.	3.0	7
17	Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods. Veterinary Research, 2019, 50, 97.	3.0	11
18	Update on chronic wasting disease (CWD) III. EFSA Journal, 2019, 17, e05863.	1.8	28

#	Article	IF	CITATIONS
19	The emergence of classical BSE from atypical/Nor98 scrapie. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26853-26862.	7.1	43
20	Animal prion diseases: the risks to human health. Brain Pathology, 2019, 29, 248-262.	4.1	63
21	Detection of PrPres in peripheral tissue in pigs with clinical disease induced by intracerebral challenge with sheep-passaged bovine spongiform encephalopathy agent. PLoS ONE, 2018, 13, e0199914.	2.5	5
22	Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste. Acta Veterinaria Scandinavica, 2018, 60, 9.	1.6	8
23	Mammalian prion propagation in PrP transgenic Drosophila. Brain, 2018, 141, 2700-2710.	7.6	14
24	Animal TSEs and public health: What remains of past lessons?. PLoS Pathogens, 2018, 14, e1006759.	4.7	1
25	The use of PrP transgenic Drosophila to replace and reduce vertebrate hosts in the bioassay of mammalian prion infectivity. F1000Research, 2018, 7, 595.	1.6	1
26	Transmission and Replication of Prions. Progress in Molecular Biology and Translational Science, 2017, 150, 181-201.	1.7	15
27	Infectivity in bone marrow from sporadic CJD patients. Journal of Pathology, 2017, 243, 273-278.	4.5	18
28	Protective Effect of Val ₁₂₉ -PrP against Bovine Spongiform Encephalopathy but not Variant Creutzfeldt-Jakob Disease. Emerging Infectious Diseases, 2017, 23, 1522-1530.	4.3	26
29	Distribution and Quantitative Estimates of Variant Creutzfeldt-Jakob Disease Prions in Tissues of Clinical and Asymptomatic Patients. Emerging Infectious Diseases, 2017, 23, 946-956.	4.3	32
30	Classical scrapie transmission in ARR/ARR genotype sheep. Journal of General Virology, 2017, 98, 2200-2204.	2.9	8
31	Experimental transmission to a calf of an isolate of Spanish classical scrapie. Journal of General Virology, 2017, 98, 2628-2634.	2.9	3
32	Bioassay of prion-infected blood plasma in PrP transgenic <i>Drosophila</i> . Biochemical Journal, 2016, 473, 4399-4412.	3.7	11
33	The Priority position paper: Protecting Europe's food chain from prions. Prion, 2016, 10, 165-181.	1.8	13
34	Absence of Evidence for a Causal Link between Bovine Spongiform Encephalopathy Strain Variant L-BSE and Known Forms of Sporadic Creutzfeldt-Jakob Disease in Human PrP Transgenic Mice. Journal of Virology, 2016, 90, 10867-10874.	3.4	26
35	Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification. Scientific Reports, 2016, 6, 29116.	3.3	24
36	Transmission of sheep-bovine spongiform encephalopathy to pigs. Veterinary Research, 2016, 47, 14.	3.0	21

#	Article	IF	CITATIONS
37	Mononucleated Blood Cell Populations Display Different Abilities To Transmit Prion Disease by the Transfusion Route. Journal of Virology, 2016, 90, 3439-3445.	3.4	13
38	Mutated but Not Deleted Ovine PrP ^C N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice. Journal of Virology, 2016, 90, 1638-1646.	3.4	12
39	Transmission of scrapie prions to primate after an extended silent incubation period. Scientific Reports, 2015, 5, 11573.	3.3	69
40	Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie. PLoS Pathogens, 2015, 11, e1005077.	4.7	12
41	Leukoreduction and blood-borne vCJD transmission risk. Current Opinion in Hematology, 2015, 22, 36-40.	2.5	13
42	Further characterisation of transmissible spongiform encephalopathy phenotypes after inoculation of cattle with two temporally separated sources of sheep scrapie from Great Britain. BMC Research Notes, 2015, 8, 312.	1.4	17
43	Prion and prion-like diseases in animals. Virus Research, 2015, 207, 82-93.	2.2	44
44	Prion strains are differentially released through the exosomal pathway. Cellular and Molecular Life Sciences, 2015, 72, 1185-1196.	5.4	46
45	Elements Modulating the Prion Species Barrier and Its Passage Consequences. PLoS ONE, 2014, 9, e89722.	2.5	46
46	White Blood Cell-Based Detection of Asymptomatic Scrapie Infection by Ex Vivo Assays. PLoS ONE, 2014, 9, e104287.	2.5	14
47	Detection of Infectivity in Blood of Persons with Variant and Sporadic Creutzfeldt-Jakob Disease. Emerging Infectious Diseases, 2014, 20, 114-117.	4.3	66
48	Evidence for zoonotic potential of ovine scrapie prions. Nature Communications, 2014, 5, 5821.	12.8	117
49	Preclinical Detection of Variant CJD and BSE Prions in Blood. PLoS Pathogens, 2014, 10, e1004202.	4.7	95
50	Role of the Goat K222-PrPC Polymorphic Variant in Prion Infection Resistance. Journal of Virology, 2014, 88, 2670-2676.	3.4	48
51	Enhanced Virulence of Sheep-Passaged Bovine Spongiform Encephalopathy Agent Is Revealed by Decreased Polymorphism Barriers in Prion Protein Conversion Studies. Journal of Virology, 2014, 88, 2903-2912.	3.4	16
52	Genetic Resistance to Scrapie Infection in Experimentally Challenged Goats. Journal of Virology, 2014, 88, 2406-2413.	3.4	56
53	PrP Expression Level and Sensitivity to Prion Infection. Journal of Virology, 2014, 88, 5870-5872.	3.4	15
54	PrP-associated resistance to scrapie in five highly infected goat herds. Journal of General Virology, 2013, 94, 241-245.	2.9	61

Olivier Andréoletti

#	Article	IF	CITATIONS
55	Scrapie in small ruminants. Food Safety Assurance and Veterinary Public Health, 2013, , 255-274.	0.4	0
56	The Limits of Test-Based Scrapie Eradication Programs in Goats. PLoS ONE, 2013, 8, e54911.	2.5	16
57	Highly Efficient Prion Transmission by Blood Transfusion. PLoS Pathogens, 2012, 8, e1002782.	4.7	83
58	Prionemia and Leukocyte-Platelet-Associated Infectivity in Sheep Transmissible Spongiform Encephalopathy Models. Journal of Virology, 2012, 86, 2056-2066.	3.4	60
59	Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein. Journal of General Virology, 2012, 93, 1624-1629.	2.9	78
60	Impact of Leucocyte Depletion and Prion Reduction Filters on TSE Blood Borne Transmission. PLoS ONE, 2012, 7, e42019.	2.5	29
61	Classical Bovine Spongiform Encephalopathy by Transmission of H-Type Prion in Homologous Prion Protein Context. Emerging Infectious Diseases, 2011, 17, 1636-1644.	4.3	56
62	Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice. PLoS Pathogens, 2011, 7, e1001319.	4.7	125
63	Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model. Neurobiology of Disease, 2011, 41, 219-225.	4.4	49
64	Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues. PLoS Pathogens, 2011, 7, e1001285.	4.7	105
65	A Simple, Versatile and Sensitive Cell-Based Assay for Prions from Various Species. PLoS ONE, 2011, 6, e20563.	2.5	24
66	Mapping of quantitative trait loci affecting classical scrapie incubation time in a population comprising several generations of scrapie-infected sheep. Journal of General Virology, 2010, 91, 575-579.	2.9	5
67	Relevance of oral experimental challenge with classical scrapie in sheep. Journal of General Virology, 2010, 91, 2139-2144.	2.9	23
68	Transgenic Mice Expressing Porcine Prion Protein Resistant to Classical Scrapie but Susceptible to Sheep Bovine Spongiform Encephalopathy and Atypical Scrapie. Emerging Infectious Diseases, 2009, 15, 1214-1221.	4.3	61
69	Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types. American Journal of Pathology, 2009, 175, 2566-2573.	3.8	36
70	Beyond PrPres Type 1/Type 2 Dichotomy in Creutzfeldt-Jakob Disease. PLoS Pathogens, 2008, 4, e1000029.	4.7	81
71	Prions in Milk from Ewes Incubating Natural Scrapie. PLoS Pathogens, 2008, 4, e1000238.	4.7	91
72	A Bovine Prion Acquires an Epidemic Bovine Spongiform Encephalopathy Strain-Like Phenotype on Interspecies Transmission. Journal of Neuroscience, 2007, 27, 6965-6971.	3.6	122

Olivier Andréoletti

#	Article	IF	CITATIONS
73	Advanced survival models for risk-factor analysis in scrapie. Journal of General Virology, 2007, 88, 696-705.	2.9	10
74	Sheep-Passaged Bovine Spongiform Encephalopathy Agent Exhibits Altered Pathobiological Properties in Bovine-PrP Transgenic Mice. Journal of Virology, 2007, 81, 835-843.	3.4	62
75	Similar Biochemical Signatures and Prion Protein Genotypes in Atypical Scrapie and Nor98 Cases, France and Norway. Emerging Infectious Diseases, 2007, 13, 58-65.	4.3	89
76	Bovine spongiform encephalopathy agent in spleen from an ARR/ARR orally exposed sheep. Journal of General Virology, 2006, 87, 1043-1046.	2.9	43
77	Haemonchus contortus(Nematoda: Trichostrongylidae) infection in lambs elicits an unequivocal Th2 immune response. Veterinary Research, 2006, 37, 607-622.	3.0	126
78	BSE agent signatures in a goat. Veterinary Record, 2005, 156, 523-524.	0.3	201
79	Polygenic variation and transmission factors involved in the resistance/susceptibility to scrapie in a Romanov flock. Journal of General Virology, 2005, 86, 849-857.	2.9	56
80	A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16031-16036.	7.1	225
81	Cultured Peripheral Neuroglial Cells Are Highly Permissive to Sheep Prion Infection. Journal of Virology, 2004, 78, 482-490.	3.4	79
82	PrPSc Immunohistochemistry. , 2004, , 82-96.		3
83	Phenotyping of Protein-Prion (PrPsc)-accumulating Cells in Lymphoid and Neural Tissues of Naturally Scrapie-affected Sheep by Double-labeling Immunohistochemistry. Journal of Histochemistry and Cytochemistry, 2002, 50, 1357-1370.	2.5	66
84	Astrocytes Accumulate 4-Hydroxynonenal Adducts in Murine Scrapie and Human Creutzfeldt–Jakob Disease. Neurobiology of Disease, 2002, 11, 386-393.	4.4	49
85	Early accumulation of PrPSc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. Journal of General Virology, 2000, 81, 3115-3126.	2.9	372