Frederic Guichard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Traits affecting nutrient recycling by mobile consumers can explain coexistence and spatially heterogeneous trophic regulation across a metaâ€ecosystem. Ecology Letters, 2022, 25, 440-452.	3.0	11
2	From Marine Metacommunities to Meta-ecosystems: Examining the Nature, Scale and Significance of Resource Flows in Benthic Marine Environments. Ecosystems, 2021, 24, 1239-1252.	1.6	5
3	Dynamic larval dispersal can mediate the response of marine metapopulations to multiple climate change impacts. Oikos, 2021, 130, 989-1000.	1.2	7
4	Coupled phase-amplitude dynamics in heterogeneous metacommunities. Journal of Theoretical Biology, 2021, 523, 110676.	0.8	2
5	A global metaâ€analysis of temperature effects on marine fishes' digestion across trophic groups. Global Ecology and Biogeography, 2021, 30, 795-810.	2.7	7
6	Tracking unstable states: ecosystem dynamics in a changing world. Oikos, 2021, 130, 525-540.	1.2	15
7	Persistence and extinction dynamics driven by the rate of environmental change in a predator–prey metacommunity. Theoretical Ecology, 2020, 13, 629-643.	0.4	15
8	Seasonal food webs with migrations: multi-season models reveal indirect species interactions in the Canadian Arctic tundra. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190354.	1.6	9
9	Converting Ecological Currencies: Energy, Material, and Information Flows. Trends in Ecology and Evolution, 2020, 35, 1068-1077.	4.2	15
10	Nonâ€resource effects of foundation species on metaâ€ecosystem stability and function. Oikos, 2019, 128, 1613-1632.	1.2	7
11	Ocean acidification causes mortality in the medusa stage of the cubozoan Carybdea xaymacana. Scientific Reports, 2019, 9, 5622.	1.6	6
12	Metaâ€ecosystem processes alter ecosystem function and can promote herbivoreâ€mediated coexistence. Ecology, 2019, 100, e02699.	1.5	8
13	Coupled Networks of Permanent Protected Areas and Dynamic Conservation Areas for Biodiversity Conservation Under Climate Change. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	54
14	Dispersal traits interact with dynamic connectivity to affect metapopulation growth and stability. Theoretical Ecology, 2019, 12, 111-127.	0.4	10
15	The emergence of phase asynchrony and frequency modulation in metacommunities. Theoretical Ecology, 2019, 12, 329-343.	0.4	7
16	Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Scientific Reports, 2018, 8, 15443.	1.6	49
17	Signatures of the collapse and incipient recovery of an overexploited marine ecosystem. Royal Society Open Science, 2017, 4, 170215.	1.1	57
18	Regular patterns link individual behavior to population persistence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7747-7749.	3.3	4

FREDERIC GUICHARD

#	Article	IF	CITATIONS
19	Transferability and scalability of species distribution models: a test with sedentary marine invertebrates. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 766-778.	0.7	7
20	Recent advances in metacommunities and meta-ecosystem theories. F1000Research, 2017, 6, 610.	0.8	20
21	At what scales does aggregated dispersal lead to coexistence?. Oikos, 2016, 125, 1677-1687.	1.2	3
22	Reciprocal feedbacks between spatial subsidies and reserve networks in coral reef metaâ€ecosystems. Ecological Applications, 2016, 26, 264-278.	1.8	20
23	Effect of shipping traffic on biofouling invasion success at population and community levels. Biological Invasions, 2016, 18, 3681-3695.	1.2	30
24	Nonhierarchical Dispersal Promotes Stability and Resilience in a Tritrophic Metacommunity. American Naturalist, 2016, 187, E116-E128.	1.0	26
25	A Traitâ€based framework for mutation bias as a driver of longâ€ŧerm evolutionary trends. Complexity, 2016, 21, 331-345.	0.9	3
26	Emergence of nutrient coâ€limitation through movement in stoichiometric metaâ€ecosystems. Ecology Letters, 2015, 18, 1163-1173.	3.0	36
27	The effect of predator avoidance and travel time delay on the stability of predator-prey metacommunities. Theoretical Ecology, 2015, 8, 273-283.	0.4	14
28	How robust is dispersal-induced spatial synchrony?. Chaos, 2015, 25, 036402.	1.0	6
29	Patterns and scales of connectivity: temporal stability and variation within a marine metapopulation. Ecology, 2015, 96, 2245-2256.	1.5	25
30	Fidelity drive: A mechanism for chaperone proteins to maintain stable mutation rates in prokaryotes over evolutionary time. Journal of Theoretical Biology, 2015, 364, 162-167.	0.8	1
31	The Paradox of Enrichment in Metaecosystems. American Naturalist, 2014, 184, 752-763.	1.0	65
32	Meta-ecosystem dynamics and functioning on finite spatial networks. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132094.	1.2	49
33	Synchrony: quantifying variability in space and time. Methods in Ecology and Evolution, 2014, 5, 524-533.	2.2	100
34	Non-equilibrium spatial dynamics of ecosystems. Mathematical Biosciences, 2014, 255, 1-10.	0.9	16
35	Reproducing on Time When Temperature Varies: Shifts in the Timing of Courtship by Fiddler Crabs. PLoS ONE, 2014, 9, e97593.	1.1	19
36	Synchronization in ecological systems by weak dispersal coupling with time delay. Theoretical Ecology, 2013, 6, 405-418.	0.4	20

FREDERIC GUICHARD

#	Article	IF	CITATIONS
37	Designing effective reserve networks for nonequilibrium metacommunities. Ecological Applications, 2013, 23, 1488-1503.	1.8	19
38	Unifying sources and sinks in ecology andÂ <scp>E</scp> arth sciences. Biological Reviews, 2013, 88, 365-379.	4.7	85
39	Modeling biofouling from boat and source characteristics: a comparative study between Canada and New Zealand. Biological Invasions, 2012, 14, 2301-2314.	1.2	21
40	Metaâ€ecosystem engineering: Nutrient fluxes reveal intraspecific and interspecific feedbacks in fragmented mussel beds. Ecology, 2012, 93, 324-333.	1.5	32
41	Disentangling invasion processes in a dynamic shipping–boating network. Molecular Ecology, 2012, 21, 4227-4241.	2.0	35
42	Species coexistence in a variable world. Ecology Letters, 2011, 14, 828-839.	3.0	94
43	Persistence Increases with Diversity and Connectance in Trophic Metacommunities. PLoS ONE, 2011, 6, e19374.	1.1	81
44	Choosing Fitness-Enhancing Innovations Can Be Detrimental under Fluctuating Environments. PLoS ONE, 2011, 6, e26770.	1.1	6
45	Ecological Systems as Complex Systems: Challenges for an Emerging Science. Diversity, 2010, 2, 395-410.	0.7	98
46	Nutrient flows between ecosystems can destabilize simple food chains. Journal of Theoretical Biology, 2010, 266, 162-174.	0.8	37
47	Ecological processes can synchronize marine population dynamics over continental scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8281-8286.	3.3	72
48	Comparative analysis of marine ecosystems: workshop on predator–prey interactions. Biology Letters, 2010, 6, 579-581.	1.0	16
49	Source and sink dynamics in metaâ€ecosystems. Ecology, 2010, 91, 2172-2184.	1.5	122
50	Synchrony and Stability of Food Webs in Metacommunities. American Naturalist, 2010, 175, E16-E34.	1.0	107
51	Patch Dynamics, Persistence, and Species Coexistence in Metaecosystems. American Naturalist, 2010, 176, 289-302.	1.0	66
52	Estimating dispersal from genetic isolation by distance in a coral reef fish (Hypoplectrus puella). Ecology, 2009, 90, 3087-3098.	1.5	50
53	Using spatial statistics to infer scales of demographic connectivity between populations of the blue mussel, <i>Mytilus</i> spp. Limnology and Oceanography, 2009, 54, 970-977.	1.6	16
54	Intrinsic and extrinsic causes of spatial variability across scales in a metacommunity. Journal of Theoretical Biology, 2008, 250, 113-124.	0.8	10

FREDERIC GUICHARD

#	Article	IF	CITATIONS
55	Population genetic analyses of <i>Hypoplectrus</i> coral reef fishes provide evidence that local processes are operating during the early stages of marine adaptive radiations. Molecular Ecology, 2008, 17, 1405-1415.	2.0	47
56	Colour pattern as a single trait driving speciation in Hypoplectrus coral reef fishes?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1265-1271.	1.2	112
57	LOCAL DISTURBANCE CYCLES AND THE MAINTENANCE OF HETEROGENEITY ACROSS SCALES IN MARINE METAPOPULATIONS. Ecology, 2007, 88, 647-657.	1.5	15
58	Weak trophic interactions and the balance of enriched metacommunities. Journal of Theoretical Biology, 2007, 247, 337-345.	0.8	34
59	Interaction strength and extinction risk in a metacommunity. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1571-1576.	1.2	22
60	Criticality and disturbance in spatial ecological systems. Trends in Ecology and Evolution, 2005, 20, 88-95.	4.2	211
61	Competition landscapes: scaling up local biotic and abiotic processes in heterogeneous environments. Theoretical Population Biology, 2004, 66, 101-111.	0.5	5
62	Toward a Dynamic Metacommunity Approach to Marine Reserve Theory. BioScience, 2004, 54, 1003.	2.2	77
63	Mussel Disturbance Dynamics: Signatures of Oceanographic Forcing from Local Interactions. American Naturalist, 2003, 161, 889-904.	1.0	119
64	Cluster size distributions: signatures of self–organization in spatial ecologies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 657-666.	1.8	99
65	Scaling the influence of topographic heterogeneity on intertidal benthic communities: alternate trajectories mediated by hydrodynamics and shading. Marine Ecology - Progress Series, 2001, 217, 27-41.	0.9	46
66	Highâ€resolution remote sensing of intertidal ecosystems: A lowâ€cost technique to link scaleâ€dependent patterns and processes. Limnology and Oceanography, 2000, 45, 328-338.	1.6	40