
Camille Mellin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Outstanding Challenges in the Transferability of Ecological Models. Trends in Ecology and Evolution, 2018, 33, 790-802.	4.2	403
2	A review and metaâ€analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Global Change Biology, 2015, 21, 2122-2140.	4.2	372
3	Marine protected areas increase resilience among coral reef communities. Ecology Letters, 2016, 19, 629-637.	3.0	231
4	On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, Coastal and Shelf Science, 2010, 88, 21-32.	0.9	225
5	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	4.2	182
6	Water quality mediates resilience on the Great Barrier Reef. Nature Ecology and Evolution, 2019, 3, 620-627.	3.4	139
7	Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. Diversity, 2017, 9, 41.	0.7	126
8	Effectiveness of Biological Surrogates for Predicting Patterns of Marine Biodiversity: A Global Meta-Analysis. PLoS ONE, 2011, 6, e20141.	1.1	105
9	Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Global Change Biology, 2019, 25, 2431-2445.	4.2	92
10	Environmental and spatial predictors of species richness and abundance in coral reef fishes. Global Ecology and Biogeography, 2010, 19, 212-222.	2.7	90
11	Oceanâ€scale prediction of whale shark distribution. Diversity and Distributions, 2012, 18, 504-518.	1.9	87
12	A new framework for selecting environmental surrogates. Science of the Total Environment, 2015, 538, 1029-1038.	3.9	84
13	Inferred global connectivity of whale shark <i>Rhincodon typus</i> populations. Journal of Fish Biology, 2013, 82, 367-389.	0.7	80
14	Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecological Indicators, 2016, 63, 121-125.	2.6	79
15	Population dynamics can be more important than physiological limits for determining range shifts under climate change. Global Change Biology, 2013, 19, 3224-3237.	4.2	73
16	Remote sensing and fish–habitat relationships in coral reef ecosystems: Review and pathways for multi-scale hierarchical research. Marine Pollution Bulletin, 2009, 58, 11-19.	2.3	61
17	Reef size and isolation determine the temporal stability of coral reef fish populations. Ecology, 2010, 91, 3138-3145.	1.5	49
18	Predicting current and future global distributions of whale sharks. Global Change Biology, 2014, 20, 778-789.	4.2	49

CAMILLE MELLIN

#	Article	IF	CITATIONS
19	Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges. Nature Communications, 2016, 7, 10491.	5.8	43
20	Seasonal and ontogenetic patterns of habitat use in coral reef fish juveniles. Estuarine, Coastal and Shelf Science, 2007, 75, 481-491.	0.9	42
21	Strong but opposing <i>β</i> -diversity–stability relationships in coral reef fish communities. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20131993.	1.2	42
22	Spatial predictability of juvenile fish species richness and abundance in a coral reef environment. Coral Reefs, 2007, 26, 895-907.	0.9	41
23	Habitat loss and range shifts contribute to ecological generalization among reef fishes. Nature Ecology and Evolution, 2021, 5, 656-662.	3.4	40
24	Forecasting marine invasions under climate change: Biotic interactions and demographic processes matter. Biological Conservation, 2016, 204, 459-467.	1.9	34
25	Why decadal to century timescale palaeoclimate data are needed to explain presentâ€day patterns of biological diversity and change. Global Change Biology, 2018, 24, 1371-1381.	4.2	32
26	Geographic range determinants of two commercially important marine molluscs. Diversity and Distributions, 2012, 18, 133-146.	1.9	31
27	Population biology and vulnerability to fishing of deep-water Eteline snappers. Journal of Applied Ichthyology, 2013, 29, 395-403.	0.3	31
28	Modeling the distribution of a wideâ€ranging invasive species using the sampling efforts of expert and citizen scientists. Ecology and Evolution, 2019, 9, 11053-11063.	0.8	30
29	Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Communications Biology, 2020, 3, 442.	2.0	30
30	Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star <i>Acanthaster</i> sp. on Australia's Great Barrier Reef. Biological Bulletin, 2021, 241, 330-346.	0.7	25
31	Multi-scale marine biodiversity patterns inferred efficiently from habitat image processing. , 2012, 22, 792-803.		23
32	Predicting the structure of larval fish assemblages by a hierarchical classification of meteorological and water column forcing factors. Coral Reefs, 2008, 27, 867-880.	0.9	21
33	Transferability of predictive models of coral reef fish species richness. Journal of Applied Ecology, 2016, 53, 64-72.	1.9	21
34	Cross-Shelf Variation in Coral Community Response to Disturbance on the Great Barrier Reef. Diversity, 2019, 11, 38.	0.7	21
35	Recurrent Mass-Bleaching and the Potential for Ecosystem Collapse on Australia's Great Barrier Reef. Ecological Studies, 2021, , 265-289.	0.4	21
36	Joint estimation of crown of thorns (<i>Acanthaster planci</i>) densities on the Great Barrier Reef. PeerJ, 2016, 4, e2310.	0.9	21

CAMILLE MELLIN

#	Article	IF	CITATIONS
37	Diversity of coral reef fish assemblages: Modelling of the species richness spectra from multi-scale environmental variables in the Tuamotu Archipelago (French Polynesia). Ecological Modelling, 2006, 198, 409-425.	1.2	19
38	A novel method for mapping reefs and subtidal rocky habitats using artificial neural networks. Ecological Modelling, 2011, 222, 2606-2614.	1.2	17
39	Species Distribution Models of Tropical Deep-Sea Snappers. PLoS ONE, 2015, 10, e0127395.	1.1	17
40	Highâ€resolution characterization of the abiotic environment and disturbance regimes on the Great Barrier Reef, 1985–2017. Ecology, 2019, 100, e02574.	1.5	17
41	Assessing the diversity and abundances of larvae and juveniles of coral reef fish: a synthesis of six sampling techniques. Biodiversity and Conservation, 2009, 18, 355-371.	1.2	16
42	Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201798.	1.2	16
43	Inter-ocean asynchrony in whale shark occurrence patterns. Journal of Experimental Marine Biology and Ecology, 2014, 450, 21-29.	0.7	15
44	Selective Feeding and Microalgal Consumption Rates by Crown-Of-Thorns Seastar (Acanthaster cf.) Tj ETQq0 0 0	rgBT /Ove	rlqçk 10 Tf 5
45	A closer examination of the â€~abundant centre' hypothesis for reef fishes. Journal of Biogeography, 2020, 47, 2194-2209.	1.4	15
46	Regionalâ€scale patterns and predictors of species richness and abundance across twelve major tropical interâ€reef taxa. Ecography, 2014, 37, 162-171.	2.1	14
47	Direct and indirect effects of heatwaves on a coral reef fishery. Global Change Biology, 2021, 27, 1214-1225.	4.2	14
48	Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate. PLoS ONE, 2012, 7, e46554.	1.1	14
49	Generalizing the use of geographical weights in biodiversity modelling. Global Ecology and Biogeography, 2014, 23, 1314-1323.	2.7	13

50	Representation and complementarity of the longâ€ŧerm coral monitoring on the Great Barrier Reef. Ecological Applications, 2020, 30, e02122.	1.8	13
51	Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes. PLoS ONE, 2016, 11, e0155634.	1.1	11
52	Spatial and temporal predictions of inter-decadal trends in Indian Ocean whale sharks. Marine Ecology - Progress Series, 2013, 478, 185-195.	0.9	10
53	Better Model Transfers Require Knowledge of Mechanisms. Trends in Ecology and Evolution, 2019, 34, 489-490.	4.2	10
	The Australian National Pabhit Database: 50Âvr of population monitoring of an invasive species		

54The Australian National Rabbit Database: 50Âyr of population monitoring of an invasive species.1.51054Ecology, 2019, 100, e02750.1.510

CAMILLE MELLIN

#	Article	IF	CITATIONS
55	Monitoring through many eyes: Integrating disparate datasets to improve monitoring of the Great Barrier Reef. Environmental Modelling and Software, 2020, 124, 104557.	1.9	9
56	Natural and anthropogenic influences on the diversity structure of reef fish communities in the Tuamotu Archipelago (French Polynesia). Ecological Modelling, 2008, 218, 182-187.	1.2	8
57	Challenges of transferring models of fish abundance between coral reefs. PeerJ, 2018, 6, e4566.	0.9	8
58	Conservation management and sustainable harvest quotas are sensitive to choice of climate modelling approach for two marine gastropods. Diversity and Distributions, 2013, 19, 1299-1312.	1.9	7
59	Environmental determinants of coral reef fish diversity across several French Polynesian atolls. Comptes Rendus - Biologies, 2012, 335, 417-423.	0.1	5
60	Larval connectivity and water quality explain spatial distribution of crown-of-thorns starfish outbreaks across the Great Barrier Reef. Advances in Marine Biology, 2020, 87, 223-258.	0.7	5
61	Assemblages of reef fish settling on artificial substrates: effect of ambient habitat over two temporal scales. Marine and Freshwater Research, 2009, 60, 1285.	0.7	4
62	Evidence for a broad-scale decline in giant Australian cuttlefish (Sepia apama) abundance from non-targeted survey data. Marine and Freshwater Research, 2015, 66, 692.	0.7	4
63	Fine-scale benthic biodiversity patterns inferred from image processing. Ecological Complexity, 2015, 22, 76-85.	1.4	3
64	COTSMod: A spatially explicit metacommunity model of outbreaks of crown-of-thorns starfish and coral recovery. Advances in Marine Biology, 2020, 87, 259-290.	0.7	3
65	Detecting age-structured effects in growth performance of coral reef fish juveniles. Aquatic Biology, 2009, 6, 31-39.	0.5	3
66	Faster ocean warming threatens richest areas of marine biodiversity. Global Change Biology, 2022, 28, 5849-5858.	4.2	2
67	Bayesian Learning of Biodiversity Models Using Repeated Observations. Lecture Notes in Mathematics, 2020, , 371-384.	0.1	0