Chunsheng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5921850/publications.pdf

Version: 2024-02-01

		93792	150775
183	4,834	39	59
papers	citations	h-index	g-index
185	185	185	4606
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks. Mechanics of Advanced Materials and Structures, 2023, 30, 2001-2016.	1.5	1
2	Determination of the Fracture Toughness of Glasses via Scratch Tests with a Vickers Indenter. Acta Mechanica Solida Sinica, 2022, 35, 129-138.	1.0	6
3	Temperature-dependent bending strength in piezoelectric semiconductive ceramics. Ceramics International, 2022, 48, 2771-2775.	2.3	4
4	Simultaneously achieving strength and ductility in Ni3Al nanowires with superlattice intrinsic stacking faults. International Journal of Mechanical Sciences, 2022, 215, 106953.	3.6	9
5	Nonlinear Solution of a Piezoelectric PN Junction Under Temperature Gradient. International Journal of Applied Mechanics, 2022, 14, .	1.3	4
6	Characterization of Pore Structures with Mercury Intrusion Porosimetry after Electrochemical Modification: A Case Study of Jincheng Anthracite. ACS Omega, 2022, 7, 11148-11157.	1.6	0
7	Displacement discontinuity method for interfacial cracks in one-dimensional hexagonal quasi-crystal coating under thermal-mechanical loading. Journal of Thermal Stresses, 2022, 45, 517-537.	1.1	2
8	Polarization-dominated thermal-electric-mechanical behaviours in GaN ceramics. Ceramics International, 2022, , .	2.3	2
9	Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature. Philosophical Magazine, 2021, 101, 154-178.	0.7	19
10	Nonlinear analysis of a crack in 2D piezoelectric semiconductors with exact electric boundary conditions. Journal of Intelligent Material Systems and Structures, 2021, 32, 632-639.	1.4	4
11	Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy. Materials Today Communications, 2021, 26, 101902.	0.9	11
12	Hardening Ni3Al via complex stacking faults and twinning boundary. Computational Materials Science, 2021, 188, 110201.	1.4	15
13	Electric current-restrained crack propagation in brittle GaN ceramics. Journal of Materials Science, 2021, 56, 5730-5735.	1.7	O
14	Temperature Gradient-Dominated Electrical Behaviours in a Piezoelectric PN Junction. Journal of Electronic Materials, 2021, 50, 947-953.	1.0	14
15	A Statistical Evolution Model of Concrete Damage Induced by Seawater Corrosion. Materials, 2021, 14, 1007.	1.3	9
16	Analysis of interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane loads. Engineering Fracture Mechanics, 2021, 243, 107534.	2.0	16
17	Effects of flexoelectricity and strain gradient on bending vibration characteristics of piezoelectric semiconductor nanowires. Journal of Applied Physics, 2021, 129, .	1.1	16
18	Hydrogen induced slowdown of spallation in high entropy alloy under shock loading. International Journal of Plasticity, 2021, 139, 102944.	4.1	18

#	Article	IF	CITATIONS
19	Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. Applied Mathematics and Mechanics (English Edition), 2021, 42, 665-676.	1.9	12
20	Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes. European Journal of Mechanics, A/Solids, 2021, 87, 104230.	2.1	11
21	Effects of bedding planes on the fracture characteristics of coal under dynamic loading. Engineering Fracture Mechanics, 2021, 250, 107761.	2.0	12
22	Atomistic modeling for the extremely low and high temperature-dependent yield strength in a Ni-based single crystal superalloy. Materials Today Communications, 2021, 27, 102451.	0.9	1
23	Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries. Engineering Fracture Mechanics, 2021, 253, 107866.	2.0	64
24	Low-velocity impact behaviors of glass fiber-reinforced polymer laminates embedded with shape memory alloy. Composite Structures, 2021, 272, 114194.	3.1	8
25	Interaction between the edge dislocation dipole pair and interfacial misfit dislocation network in Ni-based single crystal superalloys. International Journal of Solids and Structures, 2021, 228, 111128.	1.3	12
26	Analysis of a penny-shaped crack with semi-permeable boundary conditions across crack face in a 3D thermal piezoelectric semiconductor. Engineering Analysis With Boundary Elements, 2021, 131, 76-85.	2.0	0
27	A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate. Engineering Analysis With Boundary Elements, 2021, 132, 159-167.	2.0	20
28	Mobility of the {0110} inversion domain boundary in ZnO nanopillars. Materials Letters, 2021, 305, 130778.	1.3	3
29	Interactions between butterfly-like prismatic dislocation loop pairs and planar defects in Ni ₃ Al. Physical Chemistry Chemical Physics, 2021, 23, 10377-10383.	1.3	7
30	Repeatable mechanical energy absorption of ZnO nanopillars. Materials Today Communications, 2021, 29, 102904.	0.9	2
31	Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure. Applied Mathematics and Mechanics (English Edition), 2021, 42, 1633-1648.	1.9	11
32	Anisotropic electromechanical properties of GaN ceramics caused by polarisation. Ceramics International, 2020, 46, 5331-5336.	2.3	4
33	Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests. Ceramics International, 2020, 46, 6060-6066.	2.3	18
34	Mechanistic investigations of N-doped graphene/2H(1T)-MoS2 for Li/K-ions batteries. Nano Energy, 2020, 78, 105352.	8.2	20
35	Non-trivial avalanches triggered by shear banding in compression of metallic glass foams. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, .	1.0	3
36	Evolution of the Electrical Displacement and Energy Dissipation of Lead Zirconate-Titanate Ceramics under Cyclical Load. Advances in Materials Science and Engineering, 2020, 2020, 1-12.	1.0	1

3

#	Article	IF	Citations
37	A stable and efficient meshfree Galerkin method with consistent integration schemes for strain gradient thin beams and plates. Thin-Walled Structures, 2020, 153, 106791.	2.7	12
38	Influence of Different Freezing Modes on the Base Slab Displacement of an Upper Structure. Applied Sciences (Switzerland), 2020, 10, 27.	1.3	2
39	Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: Effects of flexoelectricity and strain gradient. Journal of Applied Physics, 2020, 127, .	1.1	41
40	Analysis of anti-plane interface cracks in one-dimensional hexagonal quasicrystal coating. Applied Mathematical Modelling, 2020, 81, 641-652.	2.2	21
41	Fractal Cracking Patterns in Concretes Exposed to Sulfate Attack. Materials, 2019, 12, 2338.	1.3	10
42	Consistent integration schemes for meshfree analysis of strain gradient elasticity. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112601.	3.4	10
43	A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes. Philosophical Magazine, 2019, 99, 992-1013.	0.7	9
44	Enhancement Effects of Co Doping on Interfacial Properties of Sn Electrodeâ 'Collector: A First-Principles Study. ACS Applied Materials & Interfaces, 2019, 11, 24648-24658.	4.0	19
45	Entropy evolution during crack propagation in concrete under sulfate attack. Construction and Building Materials, 2019, 209, 492-498.	3.2	13
46	An iterative approach for analysis of cracks with exact boundary conditions in finite magnetoelectroelastic solids. Smart Materials and Structures, 2019, 28, 055025.	1.8	7
47	Effect of carbon ion irradiation on the structural, mechanical and electrical properties of polycrystalline tungsten. Materials Research Express, 2019, 6, 066551.	0.8	5
48	Investigation of sudden faults instability induced by coal mining. Safety Science, 2019, 115, 256-264.	2.6	41
49	Nanoscale elasticâ€plastic deformation and mechanical properties of 3Câ€SiC thin film using nanoindentation. International Journal of Applied Ceramic Technology, 2019, 16, 706-717.	1.1	9
50	Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress. Ceramics International, 2019, 45, 7278-7285.	2.3	19
51	Electric field-induced toughening in GaN piezoelectric semiconductor ceramics. Ceramics International, 2019, 45, 6589-6593.	2.3	2
52	Deformation and failure processes of kaolinite under tension: Insights from molecular dynamics simulations. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	22
53	Lithiation-induced interfacial failure of electrode-collector: A first-principles study. Materials Chemistry and Physics, 2019, 222, 193-199.	2.0	9
54	Modeling diffusion–induced stress on two-phase lithiation in lithium-ion batteries. European Journal of Mechanics, A/Solids, 2018, 71, 320-325.	2.1	21

#	Article	IF	CITATIONS
55	Influence of polarization on the electromechanical properties of GaN piezoelectric semiconductive ceramics. Ceramics International, 2018, 44, 12648-12654.	2.3	16
56	Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Composite Structures, 2018, 187, 27-35.	3.1	80
57	The Changeable Power Law Singularity and its Application to Prediction of Catastrophic Rupture in Uniaxial Compressive Tests of Geomedia. Journal of Geophysical Research: Solid Earth, 2018, 123, 2645-2657.	1.4	15
58	Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. Journal of the European Ceramic Society, 2018, 38, 1-28.	2.8	283
59	Smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites. Journal of Composite Materials, 2018, 52, 1531-1539.	1.2	6
60	Influence of electric field and current on the strength of depoled GaN piezoelectric semiconductive ceramics. Ceramics International, 2018, 44, 4169-4175.	2.3	21
61	Electric Current Dependent Fracture in GaN Piezoelectric Semiconductor Ceramics. Materials, 2018, 11, 2000.	1.3	22
62	A direction-dependent shear strength criterion for rock joints with two new roughness parameters. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	14
63	Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries. Acta Mechanica, 2018, 229, 3293-3303.	1.1	12
64	Modelling Temperature Effects for Prismatic Lithium Manganese Oxide Batteries. Materials Focus, 2018, 7, 207-216.	0.4	1
65	Mechanical properties, stress distributions and nanoscale deformation mechanisms in single crystal 6H-SiC by nanoindentation. Journal of Alloys and Compounds, 2017, 708, 1046-1053.	2.8	19
66	Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 055007.	0.8	18
67	On the wurtzite to tetragonal phase transformation in ZnO nanowires. Nanotechnology, 2017, 28, 165705.	1.3	9
68	Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs. Scientific Reports, 2017, 7, 15305.	1.6	25
69	An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries. International Journal of Plasticity, 2017, 88, 188-203.	4.1	41
70	Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 172-180.	1.5	40
71	Nano-scale elastic–plastic properties and indentation-induced deformation of amorphous silicon carbide thin film. Ceramics International, 2017, 43, 385-391.	2.3	24
72	Softening by electrochemical reaction-induced dislocations in lithium-ion batteries. Scripta Materialia, 2017, 127, 33-36.	2.6	26

#	Article	IF	CITATIONS
73	A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries. Theoretical and Applied Mechanics Letters, 2017, 7, 199-206.	1.3	20
74	Mechanical properties of Li–Sn alloys for Li-ion battery anodes: A first-principles perspective. AIP Advances, 2016, 6, .	0.6	23
75	Reliability assessment on interfacial failure of thermal barrier coatings. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 915-924.	1.5	9
76	Effects of size and concentration on diffusion-induced stress in lithium-ion batteries. Journal of Applied Physics, 2016, 120, .	1.1	21
77	A relation to predict the failure of materials and potential application to volcanic eruptions and landslides. Scientific Reports, 2016, 6, 27877.	1.6	39
78	Failure Prediction of High-Capacity Electrode Materials in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A1157-A1163.	1.3	46
79	Stress–strain relationships of Li Sn alloys for lithium ion batteries. Journal of Power Sources, 2016, 311, 21-28.	4.0	32
80	A metallic glass syntactic foam with enhanced energy absorption performance. Scripta Materialia, 2016, 119, 47-50.	2.6	22
81	SnO2/Reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-Ion Batteries with Enhanced Cyclability. Journal of Nanoscience and Nanotechnology, 2016, 16, 4136-4140.	0.9	6
82	Numerical Simulation of Temperature Distribution and Thermal-Stress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid–Solid Coupling Method. Journal of Materials Science and Technology, 2016, 32, 452-458.	5.6	39
83	Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries. Acta Mechanica, 2016, 227, 2505-2510.	1.1	8
84	Influence of strain rate on the piezoresistive behavior of conductive polyamide composites. Composites Science and Technology, 2016, 133, 1-6.	3.8	11
85	Effects of oxygen vacancies on polarization stability of barium titanate. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	14
86	A facile method to prepare electrode materials for pseudocapacitors with superior capacitive performance. Materials Letters, 2016, 164, 421-424.	1.3	6
87	A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries. RSC Advances, 2016, 6, 22383-22388.	1.7	26
88	A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithium–sulfur batteries. Journal of Materials Science, 2016, 51, 5139-5145.	1.7	22
89	Sandwich-like CNTs@SnO 2 /SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries. Journal of Electroanalytical Chemistry, 2016, 767, 49-55.	1.9	65
90	A twins-structural Sn@C core–shell composite as anode materials for lithium-ion batteries. Composite Interfaces, 2016, 23, 273-280.	1.3	13

#	Article	IF	Citations
91	Acoustic emission assessment of interface cracking in thermal barrier coatings. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 342-348.	1.5	17
92	Failure modes of hollow core–shell structural active materials during the lithiation–delithiation process. Journal of Power Sources, 2015, 290, 114-122.	4.0	76
93	Finite Element Simulations on Erosion and Crack Propagation in Thermal Barrier Coatings. High Temperature Materials and Processes, 2015, 34, .	0.6	1
94	Materials can be strengthened by nanoscale stacking faults. Europhysics Letters, 2015, 110, 36002.	0.7	9
95	Optimal design of hollow core–shell structural active materials for lithium ion batteries. Results in Physics, 2015, 5, 250-252.	2.0	2
96	Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: Cluster analysis of acoustic emission signals. Surface and Coatings Technology, 2015, 264, 97-104.	2.2	27
97	Intelligent Discrimination of Failure Modes in Thermal Barrier Coatings: Wavelet Transform and Neural Network Analysis of Acoustic Emission Signals. Experimental Mechanics, 2015, 55, 321-330.	1.1	18
98	Modelling the tuned criticality in stick-slip friction during metal cutting. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 055013.	0.8	6
99	Size-dependent brittle-to-ductile transition in GaAs nano-rods. Engineering Fracture Mechanics, 2015, 150, 135-142.	2.0	5
100	A first principles study of the mechanical properties of Li–Sn alloys. RSC Advances, 2015, 5, 36022-36029.	1.7	41
101	The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings. Surface and Coatings Technology, 2015, 276, 160-167.	2.2	51
102	Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 2015, 64, 76-87.	4.1	105
103	Sulfur@metal cotton with superior cycling stability as cathode materials for rechargeable lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 2015, 738, 184-187.	1.9	32
104	Joining of bulk metallic glass to brass by thick-walled cylinder explosion. Scripta Materialia, 2015, 97, 17-20.	2.6	26
105	Dynamic fragmentation induced by network-like shear bands in a Zr-based bulk metallic glass. Intermetallics, 2015, 56, 96-100.	1.8	13
106	Quantitative characterization of the interfacial adhesion of Ni thin film on steel substrate: A compression-induced buckling delamination test. Journal of the Mechanics and Physics of Solids, 2015, 74, 19-37.	2.3	8
107	Sulfur-Nickel Foam as Cathode Materials for Lithium-Sulfur Batteries. ECS Electrochemistry Letters, 2014, 4, A19-A21.	1.9	27
108	Deformation-induced phase transformation in 4H–SiC nanopillars. Acta Materialia, 2014, 80, 392-399.	3.8	16

#	Article	IF	CITATIONS
109	Quantitative assessment of the surface crack density in thermal barrier coatings. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 167-174.	1.5	21
110	Finite Element Simulation on Thermal Fatigue of a Turbine Blade with Thermal Barrier Coatings. Journal of Materials Science and Technology, 2014, 30, 371-380.	5.6	68
111	In-situ and real-time tests on the damage evolution and fracture of thermal barrier coatings under tension: A coupled acoustic emission and digital image correlation method. Surface and Coatings Technology, 2014, 240, 40-47.	2.2	44
112	Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries. RSC Advances, 2014, 4, 41281-41286.	1.7	22
113	Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Applied Surface Science, 2014, 315, 292-298.	3.1	77
114	Optimal Linear Regression Estimator in the Fitting of Weibull Strength Distribution. Journal of Testing and Evaluation, 2014, 42, 1396-1407.	0.4	7
115	Strengthening Brittle Semiconductor Nanowires through Stacking Faults: Insights from in Situ Mechanical Testing. Nano Letters, 2013, 13, 4369-4373.	4.5	45
116	Measurement of the mechanical properties of nickel film based on the full-field deformation: An improved blister method. Progress in Natural Science: Materials International, 2013, 23, 453-458.	1.8	4
117	Determination of interfacial adhesive properties for polymeric film by blister test. Transactions of Nonferrous Metals Society of China, 2013, 23, 3033-3039.	1.7	2
118	Finite element analysis of crack propagation and fracture mechanical properties of freestanding 8wt.% Y2O3â€"ZrO2 coatings. Surface and Coatings Technology, 2013, 223, 87-91.	2.2	17
119	Prediction of Failure Modes during Deep Drawing of Metal Sheets with Nickel Coating. Journal of Materials Science and Technology, 2013, 29, 1059-1066.	5.6	8
120	Fracture characteristics of freestanding 8wt% Y2O3â€"ZrO2 coatings by single edge notched beam and Vickers indentation tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 581, 140-144.	2.6	38
121	Effect of sintering temperature on microstructure and strength distribution of alumina coil springs. Advances in Applied Ceramics, 2013, 112, 33-38.	0.6	2
122	Effect of Thermal Annealing on Nanostructure and Shape Transition in SiC–C Nanocomposites. Nanoscience and Nanotechnology Letters, 2012, 4, 435-440.	0.4	1
123	Self-healing of fractured one-dimensional brittle nanostructures. Europhysics Letters, 2012, 98, 16010.	0.7	3
124	Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique. Surface and Coatings Technology, 2012, 206, 4455-4461.	2.2	62
125	Characterization of stress-strain relationships of elastoplastic materials: An improved method with conical and pyramidal indenters. Mechanics of Materials, 2012, 54, 113-123.	1.7	45
126	An Inverse Approach for Extracting Elastic–plastic Properties of Thin Films from Small Scale Sharp Indentation. Journal of Materials Science and Technology, 2012, 28, 626-635.	5.6	48

#	Article	IF	Citations
127	Self-healing in fractured GaAs nanowires. Acta Materialia, 2012, 60, 5593-5600.	3.8	9
128	Residual stress effect on hardness and yield strength of Ni thin film. Surface and Coatings Technology, 2012, 207, 305-309.	2.2	33
129	Influence of microstructures on mechanical behaviours of SiC nanowires: a molecular dynamics study. Nanotechnology, 2012, 23, 025703.	1.3	47
130	A new method to determine the elastoplastic properties of ductile materials by conical indentation. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1032-1036.	2.0	7
131	Fracture statistics of dental ceramics: Discrimination of strength distributions. Ceramics International, 2012, 38, 4979-4990.	2.3	31
132	On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects. International Journal of Plasticity, 2012, 34, 1-11.	4.1	96
133	Acoustic emission analysis on tensile failure of air plasma-sprayed thermal barrier coatings. Surface and Coatings Technology, 2012, 206, 3803-3807.	2.2	51
134	Mathematical Analysis on the Uniqueness of Reverse Algorithm for Measuring Elastic-plastic Properties by Sharp Indentation. Journal of Materials Science and Technology, 2011, 27, 577-584.	5.6	12
135	Multiscale monitoring of interface failure of brittle coating/ductile substrate systems: A non-destructive evaluation method combined digital image correlation with acoustic emission. Journal of Applied Physics, 2011, 110, .	1.1	19
136	Fracture statistics of brittle materials at micro- and nano-scales. International Journal of Materials Research, 2011, 102, 627-633.	0.1	5
137	Deformation behavior and mechanical properties of polycrystalline and single crystal alumina during nanoindentation. Scripta Materialia, 2011, 65, 127-130.	2.6	81
138	Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: An acoustic emission method. Acta Materialia, 2011, 59, 6519-6529.	3.8	81
139	Digital image correlation approach to cracking and decohesion in a brittle coating/ductile substrate system. Applied Surface Science, 2011, 257, 6040-6043.	3.1	51
140	Nanoscale elastic–plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation. Journal of the European Ceramic Society, 2011, 31, 1865-1871.	2.8	71
141	Effects of substrate curvature radius, deposition temperature and coating thickness on the residual stress field of cylindrical thermal barrier coatings. Surface and Coatings Technology, 2011, 205, 3093-3102.	2.2	38
142	A modified layer-removal method for residual stress measurement in electrodeposited nickel films. Thin Solid Films, 2011, 519, 3249-3253.	0.8	14
143	Understanding large plastic deformation of SiC nanowires at room temperature. Europhysics Letters, 2011, 95, 63003.	0.7	9
144	Characterization of the interface adhesion of elastic–plastic thin film/rigid substrate systems using a pressurized blister test numerical model. Mechanics of Materials, 2010, 42, 908-915.	1.7	13

#	Article	IF	Citations
145	Effects of piezo-spectroscopic coefficients of 8 wt.% Y2O3 stabilized ZrO2 on residual stress measurement of thermal barrier coatings by Raman spectroscopy. Surface and Coatings Technology, 2010, 204, 3573-3577.	2.2	42
146	Modeling of interfacial friction damping of carbon nanotube-based nanocomposites. Mechanical Systems and Signal Processing, 2010, 24, 2996-3012.	4.4	49
147	Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction. Applied Surface Science, 2010, 256, 7311-7315.	3.1	83
148	Modelling permeability behaviour of polymer nanocomposites. , 2010, , 431-453.		2
149	Roles of grain boundary and dislocations at different deformation stages of nanocrystalline copper under tension. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 570-574.	0.9	37
150	Size and Volume Effects on the Strength of Microscale Lead-Free Solder Joints. Journal of Electronic Materials, 2009, 38, 2179-2183.	1.0	63
151	Anomalous electrical conductivity and percolation in carbon nanotube composites. Journal of Materials Science, 2008, 43, 6012-6015.	1.7	49
152	On the bending strength of ZnO nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6113-6115.	0.9	9
153	Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings. Applied Physics Letters, 2008, 93, 231906.	1.5	60
154	Log-normal nanograin-size distributions in nanostructured composites. Philosophical Magazine Letters, 2008, 88, 829-836.	0.5	6
155	Comment on "On the tensile strength distribution of multiwalled carbon nanotubes―[Appl. Phys. Lett. 87, 203106 (2005)]. Applied Physics Letters, 2008, 92, .	1.5	8
156	The Origin of Superhardness in Nanocomposite Coatings: Analysis of Nanoindentation and Scratch Tests., 2007,, 39-49.		0
157	Nanoindentation-induced elastic–plastic transition and size effect inα-Al2O3(0001). Philosophical Magazine Letters, 2007, 87, 409-415.	0.5	49
158	Permeability modelling of polymer-layered silicate nanocomposites. Composites Science and Technology, 2007, 67, 2895-2902.	3.8	76
159	Model-based simulation of normal grain growth in a two-phase nanostructured system. Science and Technology of Advanced Materials, 2006, 7, 812-818.	2.8	9
160	Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review. Journal of Materials Science, 2006, 41, 937-950.	1.7	90
161	Grain growth as a stochastic and curvature-driven process. Philosophical Magazine Letters, 2006, 86, 787-794.	0.5	5
162	Indentation Size Effect on Hardness of Nanostructured Thin Films. Key Engineering Materials, 2006, 312, 363-368.	0.4	6

#	Article	IF	CITATIONS
163	Monte Carlo Simulation of Microstructure and Grain Growth in nc-Ti(N,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T	f 50 742 ⁻	Гф (В)/a-(Т <mark>і</mark> В
164	Monte Carlo simulation of grain growth in two-phase nanocrystalline materials. Applied Physics Letters, 2006, 88, 144103.	1.5	23
165	The degree of predictability of earthquakes in several regions of China: statistical analysis of historical data. Journal of Asian Earth Sciences, 2005, 25, 379-385.	1.0	6
166	Optimum information in crackling noise. Physical Review E, 2005, 72, 027101.	0.8	25
167	A sudden drop of fractal dimension: a likely precursor of catastrophic failure in disordered media. Philosophical Magazine Letters, 2005, 85, 33-40.	0.5	41
168	Fractals and scaling in fracture induced by microcrack coalescence. Philosophical Magazine Letters, 2005, 85, 67-75.	0.5	5
169	Effects of Pore/Grain-Size Interaction and Porosity on the Fracture of Electroceramics. , 2005, , 411-420.		0
170	Influence of Aspect Ratio on Barrier Properties of Polymer-Clay Nanocomposites. Physical Review Letters, 2005, 95, 088303.	2.9	220
171	Scaling of fracture strength in ZnO: Effects of pore/grain-size interaction and porosity. Journal of the European Ceramic Society, 2004, 24, 3643-3651.	2.8	58
172	Fracture statistics of brittle materials: Weibull or normal distribution. Physical Review E, 2002, 65, 067102.	0.8	202
173	Influence of Threshold Stress on the Estimation of the Weibull Statistics. Journal of the American Ceramic Society, 2002, 85, 1640-1642.	1.9	53
174	Statistical analysis of synthetic earthquake catalogs generated by models with various levels of fault zone disorder. Journal of Geophysical Research, 2001, 106, 11115-11125.	3.3	14
175	Application of Linked Stress Release Model to Historical Earthquake Data: Comparison between Two Kinds of Tectonic Seismicity. , 2000, 157, 2351-2364.		13
176	Application of Linked Stress Release Model to Historical Earthquake Data: Comparison between Two Kinds of Tectonic Seismicity., 2000,, 2351-2364.		0
177	SPATIO-TEMPORAL SEISMICITY IN AN ELASTIC BLOCK LATTICE MODEL. Fractals, 1999, 07, 301-311.	1.8	5
178	Avalanche Behavior and Statistical Properties in a Microcrack Coalescence Process. Physical Review Letters, 1999, 82, 347-350.	2.9	38
179	A linked stress release model for historical Japanese earthquakes: coupling among major seismic regions. Earth, Planets and Space, 1999, 51, 907-916.	0.9	40
180	Self-organized criticality in a block lattice model of the brittle crust. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 242, 349-354.	0.9	6

CHUNSHENG LU

#	Article	IF	CITATIONS
181	On the validity of the slit islands analysis in the measure of fractal dimension of fracture surfaces. International Journal of Fracture, 1995, 69, R77-R80.	1.1	4
182	Evolution induced catastrophe. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 185, 196-200.	0.9	40
183	Analysis and Simulation of Evolution Induced Catastrophe. Chinese Physics Letters, 1993, 10, 155-158.	1.3	7