
Robert A Colbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Medicine, 1997, 3, 212-217.	15.2	1,096
2	Psoriatic Arthritis. New England Journal of Medicine, 2017, 376, 957-970.	13.9	931
3	Somatic Mutations in <i>UBA1</i> and Severe Adult-Onset Autoinflammatory Disease. New England Journal of Medicine, 2020, 383, 2628-2638.	13.9	580
4	Ankylosing Spondylitis and Axial Spondyloarthritis. New England Journal of Medicine, 2016, 374, 2563-2574.	13.9	565
5	Evolution and transmission of stable CTL escape mutations in HIV infection. Nature, 2001, 412, 334-338.	13.7	523
6	HLA–B27 misfolding and the unfolded protein response augment interleukinâ€23 production and are associated with Th17 activation in transgenic rats. Arthritis and Rheumatism, 2009, 60, 2633-2643.	6.7	342
7	Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFNâ€Ĥ² induction <i>via</i> Xâ€box binding protein 1. European Journal of Immunology, 2008, 38, 1194-1203.	1.6	278
8	HLA-B27 Misfolding in Transgenic Rats Is Associated with Activation of the Unfolded Protein Response. Journal of Immunology, 2005, 175, 2438-2448.	0.4	218
9	Gene expression profiling of peripheral blood from patients with untreated newâ€onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis and Rheumatism, 2007, 56, 3793-3804.	6.7	216
10	HLA-B27 Misfolding Is Associated with Aberrant Intermolecular Disulfide Bond Formation (Dimerization) in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2002, 277, 23459-23468.	1.6	212
11	HLA-B27 and Human β2-Microglobulin Affect the Gut Microbiota of Transgenic Rats. PLoS ONE, 2014, 9, e105684.	1.1	209
12	Review: The Interleukinâ€23/Interleukinâ€17 Axis in Spondyloarthritis Pathogenesis: Th17 and Beyond. Arthritis and Rheumatology, 2014, 66, 231-241.	2.9	192
13	HLA-B27 misfolding and ankylosing spondylitis. Molecular Immunology, 2014, 57, 44-51.	1.0	184
14	From HLAâ€B27 to spondyloarthritis: a journey through the ER. Immunological Reviews, 2010, 233, 181-202.	2.8	154
15	Subtypeâ€specific peripheral blood gene expression profiles in recentâ€onset juvenile idiopathic arthritis. Arthritis and Rheumatism, 2009, 60, 2102-2112.	6.7	153
16	Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Annals of the Rheumatic Diseases, 2014, 73, 1566-1574.	0.5	145
17	HLA–B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: Implications for the pathogenesis of spondylarthritis-like disease. Arthritis and Rheumatism, 2007, 56, 215-223.	6.7	128
18	Classification of juvenile spondyloarthritis: enthesitis-related arthritis and beyond. Nature Reviews Rheumatology, 2010, 6, 477-485.	3.5	126

ROBERT A COLBERT

#	Article	IF	CITATIONS
19	Somatic Mutations in <i>UBA1</i> Define a Distinct Subset of Relapsing Polychondritis Patients With VEXAS. Arthritis and Rheumatology, 2021, 73, 1886-1895.	2.9	125
20	HLA-B27 misfolding: a solution to the spondyloarthropathy conundrum?. Trends in Molecular Medicine, 2000, 6, 224-230.	2.6	114
21	2019 American College of Rheumatology/Arthritis Foundation Guideline for the Treatment of Juvenile Idiopathic Arthritis: Therapeutic Approaches for Non‧ystemic Polyarthritis, Sacroiliitis, and Enthesitis. Arthritis and Rheumatology, 2019, 71, 846-863.	2.9	110
22	The intestinal microbiome in spondyloarthritis. Current Opinion in Rheumatology, 2015, 27, 319-325.	2.0	97
23	Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferonâ€Î³ dysregulation. Arthritis and Rheumatism, 2008, 58, 1640-1649.	6.7	87
24	Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nature Reviews Rheumatology, 2017, 13, 25-40.	3.5	81
25	Effects of <scp>HLA</scp> –B27 on Gut Microbiota in Experimental Spondyloarthritis Implicate an Ecological Model of Dysbiosis. Arthritis and Rheumatology, 2018, 70, 555-565.	2.9	81
26	The Immunobiology of HLA-B27: Variations on a Theme. Current Molecular Medicine, 2004, 4, 21-30.	0.6	80
27	Pathogenesis of ankylosing spondylitis: Current concepts. Best Practice and Research in Clinical Rheumatology, 2006, 20, 571-591.	1.4	76
28	Development and Retrospective Validation of the Juvenile Spondyloarthritis Disease Activity Index. Arthritis Care and Research, 2014, 66, 1775-1782.	1.5	71
29	Enhanced intracellular replication ofSalmonella enteritidis in HLA-B27-expressing human monocytic cells: Dependency on glutamic acid at position 45 in the B pocket of HLA-B27. Arthritis and Rheumatism, 2004, 50, 2255-2263.	6.7	66
30	Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets. Arthritis and Rheumatism, 2009, 60, 2113-2123.	6.7	66
31	The interleukin-23/interleukin-17 axis in spondyloarthritis. Current Opinion in Rheumatology, 2008, 20, 392-397.	2.0	57
32	2019 American College of Rheumatology/Arthritis Foundation Guideline for the Screening, Monitoring, and Treatment of Juvenile Idiopathic Arthritis–Associated Uveitis. Arthritis and Rheumatology, 2019, 71, 864-877.	2.9	57
33	Development of spontaneous arthritis in β2-microglobulin-deficient mice without expression of HLA-B27: Association with deficiency of endogenous major histocompatibility complex class I expression. Arthritis and Rheumatism, 2000, 43, 2290-2296.	6.7	55
34	Biological classification of childhood arthritis: roadmap to a molecular nomenclature. Nature Reviews Rheumatology, 2021, 17, 257-269.	3.5	52
35	Reverse Interferon Signature Is Characteristic of Antigenâ€Presenting Cells in Human and Rat Spondyloarthritis. Arthritis and Rheumatology, 2014, 66, 841-851.	2.9	51
36	Nomenclature and classification in chronic childhood arthritis: Time for a change?. Arthritis and Rheumatism, 2005, 52, 382-385.	6.7	50

ROBERT A COLBERT

#	Article	IF	CITATIONS
37	The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Molecular and Cellular Proteomics, 2017, 16, 642-662.	2.5	50
38	Juvenile Spondyloarthritis. Pediatric Clinics of North America, 2018, 65, 675-690.	0.9	49
39	Update on Juvenile Spondyloarthritis. Rheumatic Disease Clinics of North America, 2013, 39, 767-788.	0.8	40
40	The role of HLA-B*27 in spondyloarthritis. Best Practice and Research in Clinical Rheumatology, 2017, 31, 797-815.	1.4	39
41	HLA‑B27 misfolding and spondyloarthropathies. Prion, 2009, 3, 15-26.	0.9	34
42	Novel Interâ€omic Analysis Reveals Relationships Between Diverse Gut Microbiota and Host Immune Dysregulation in HLA–B27–Induced Experimental Spondyloarthritis. Arthritis and Rheumatology, 2019, 71, 1849-1857.	2.9	33
43	HLA–B27 Alters the Response to Tumor Necrosis Factor α and Promotes Osteoclastogenesis in Bone Marrow Monocytes From HLA–B27–Transgenic Rats. Arthritis and Rheumatism, 2013, 65, 2123-2131.	6.7	29
44	An overview of genetics of paediatric rheumatic diseases. Best Practice and Research in Clinical Rheumatology, 2009, 23, 589-597.	1.4	28
45	The Role of Autophagy in the Degradation of Misfolded <scp>HLA</scp> –B27 Heavy Chains. Arthritis and Rheumatology, 2018, 70, 746-755.	2.9	28
46	Biosimilars: The debate continues. Arthritis and Rheumatism, 2011, 63, 2848-2850.	6.7	27
47	Endoplasmic reticulum aminopeptidase 1 and rheumatic disease. Current Opinion in Rheumatology, 2015, 27, 357-363.	2.0	26
48	HLA-B27 Misfolding and Spondyloarthropathies. Advances in Experimental Medicine and Biology, 2009, 649, 217-234.	0.8	25
49	ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Molecular Immunology, 2016, 74, 10-17.	1.0	21
50	Evidence that the p38 MAP kinase pathway is dysregulated in HLA–B27–expressing human monocytic cells: Correlation with HLA–B27 misfolding. Arthritis and Rheumatism, 2007, 56, 2652-2662.	6.7	20
51	Children With Enthesitisâ€Related Arthritis and Possible Benefits From Treatments for Adults With Spondyloarthritis. Arthritis Care and Research, 2022, 74, 1058-1064.	1.5	18
52	The enigmatic role of HLA-B*27 in spondyloarthritis pathogenesis. Seminars in Immunopathology, 2021, 43, 235-243.	2.8	18
53	Generation and differentiation of induced pluripotent stem cells reveal ankylosing spondylitis risk gene expression in bone progenitors. Clinical Rheumatology, 2017, 36, 143-154.	1.0	17
54	Enhanced phosphorylation of STATâ€1 is dependent on doubleâ€stranded RNA–dependent protein kinase signaling in HLA–B27–expressing U937 monocytic cells. Arthritis and Rheumatism, 2012, 64, 772-777.	6.7	14

ROBERT A COLBERT

#	Article	IF	CITATIONS
55	Identification of Interleukinâ€1β–Producing Monocytes That Are Susceptible to Pyronecrotic Cell Death in Patients With Neonatalâ€Onset Multisystem Inflammatory Disease. Arthritis and Rheumatology, 2015, 67, 3286-3297.	2.9	14
56	Early axial spondyloarthritis. Current Opinion in Rheumatology, 2010, 22, 603-607.	2.0	13
57	Recent Updates in Juvenile Spondyloarthritis. Rheumatic Disease Clinics of North America, 2021, 47, 565-583.	0.8	13
58	Methods in microbiome research: Past, present, and future. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101498.	1.4	12
59	Editorial: HLA–B27: The Story Continues to Unfold. Arthritis and Rheumatology, 2016, 68, 1057-1059.	2.9	9
60	Loss of bone strength in HLA-B27 transgenic rats is characterized by a high bone turnover and is mainly osteoclast-driven. Bone, 2015, 75, 183-191.	1.4	9
61	Radiography Versus Magnetic Resonance Imaging (MRI) in Juvenile Spondyloarthritis: Is the MR Image Everything?. Journal of Rheumatology, 2014, 41, 832-833.	1.0	4
62	Etiology and Pathogenesis of Spondyloarthritis. , 2017, , 1245-1255.e4.		4
63	17 and 23: prime numbers for ankylosing spondylitis?. Lancet, The, 2013, 382, 1682-1683.	6.3	3
64	Identification of Prevotella Oralis as a possible target antigen in children with Enthesitis related arthritis. Clinical Immunology, 2020, 216, 108463.	1.4	3
65	Patient-perceived Burden of Disease in Pediatric Relapsing Polychondritis. Journal of Rheumatology, 2019, 46, 1627-1633.	1.0	2
66	Fibroblasts from Patients with Melorheostosis Promote Angiogenesis in Healthy Endothelial Cells through Secreted Factors. Journal of Investigative Dermatology, 2022, 142, 2406-2414.e5.	0.3	2
67	Induced pluripotent stem cell–derived bone progenitors. , 2022, , 133-158.		о