Suneil K Koliwad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5921058/publications.pdf

Version: 2024-02-01

39 papers 3,891 citations

257450 24 h-index 315739 38 g-index

40 all docs

40 docs citations

40 times ranked

6250 citing authors

#	Article	IF	Citations
1	A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. Journal of Diabetes Science and Technology, 2023, 17, 1226-1242.	2.2	69
2	Continuous Ketone Monitoring Consensus Report 2021. Journal of Diabetes Science and Technology, 2022, 16, 689-715.	2.2	18
3	Probing Insulin Sensitivity with Metabolically Competent Human Stem Cellâ€Derived White Adipose Tissue Microphysiological Systems. Small, 2022, 18, e2103157.	10.0	3
4	A gene–diet interaction controlling relative intake of dietary carbohydrates and fats. Molecular Metabolism, 2022, 58, 101442.	6.5	7
5	Metabolic factors in the regulation of hypothalamic innate immune responses in obesity. Experimental and Molecular Medicine, 2022, 54, 393-402.	7.7	10
6	The Impact of Insulin Resistance on Loss of Lung Function and Response to Treatment in Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1096-1106.	5.6	28
7	Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021. , 2022, 1 , .		13
8	Quantifying Variation in Treatment Utilization for Type 2 Diabetes Across Five Major University of California Health Systems. Diabetes Care, 2021, 44, 908-914.	8.6	9
9	Continuous Ketone Monitoring: A New Paradigm for Physiologic Monitoring. Journal of Diabetes Science and Technology, 2021, 15, 193229682110098.	2.2	17
10	Autoregulation of insulin receptor signaling through MFGE8 and the $\hat{l}\pm\nu\hat{l}^2$ 5 integrin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
11	Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Frontiers in Endocrinology, 2021, 12, 668396.	3.5	18
12	Lack of association between either outpatient or inpatient glycemic control and COVID-19 illness severity or mortality in patients with diabetes. BMJ Open Diabetes Research and Care, 2021, 9, e002203.	2.8	13
13	Blocking Kv1.3 potassium channels prevents postoperative neuroinflammation and cognitive decline without impairing wound healing in mice. British Journal of Anaesthesia, 2020, 125, 298-307.	3.4	24
14	CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 2020, 182, 563-577.e20.	28.9	156
15	Sweet cognition: The differential effects of glucose consumption on attentional food bias in individuals of lean and obese status. Physiology and Behavior, 2019, 206, 264-273.	2.1	6
16	Obesity and Fat Metabolism in Human Immunodeficiency Virus–Infected Individuals: Immunopathogenic Mechanisms and Clinical Implications. Journal of Infectious Diseases, 2019, 220, 420-431.	4.0	64
17	Hypothalamic microglia as potential regulators of metabolic physiology. Nature Metabolism, 2019, 1, 314-320.	11.9	35
18	mTORC1-to-AMPK switching underlies \hat{l}^2 cell metabolic plasticity during maturation and diabetes. Journal of Clinical Investigation, 2019, 129, 4124-4137.	8.2	80

#	Article	IF	CITATIONS
19	Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. Cell Metabolism, 2018, 27, 180-194.e6.	16.2	133
20	Fighting obesity by targeting factors regulating beige adipocytes. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 437-443.	2.5	13
21	Subcutaneous Fat Fibrosis Links Obesity to Insulin Resistance in Chinese Americans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3194-3204.	3.6	30
22	Regulation of Hepatic Lipid Accumulation and Distribution by Agouti-Related Protein in Male Mice. Endocrinology, 2018, 159, 2408-2420.	2.8	11
23	Acute Lesioning and Rapid Repair of Hypothalamic Neurons outside the Blood-Brain Barrier. Cell Reports, 2017, 19, 2257-2271.	6.4	42
24	The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure. Journal of Biological Chemistry, 2017, 292, 16122-16134.	3.4	42
25	Triglyceride Synthesis by DGAT1 Protects Adipocytes from Lipid-Induced ER Stress during Lipolysis. Cell Metabolism, 2017, 26, 407-418.e3.	16.2	241
26	Microglial Inflammatory Signaling Orchestrates the Hypothalamic Immune Response to Dietary Excess and Mediates Obesity Susceptibility. Cell Metabolism, 2017, 26, 185-197.e3.	16.2	321
27	Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight, 2017, 2, e91229.	5.0	246
28	Saturated Fatty Acids Engage an IRE1 $\hat{1}$ ±-Dependent Pathway to Activate the NLRP3 Inflammasome in Myeloid Cells. Cell Reports, 2016, 14, 2611-2623.	6.4	154
29	Acyl-CoA:Diacylglycerol Acyltransferase 1 Expression Level in the Hematopoietic Compartment Impacts Inflammation in the Vascular Plaques of Atherosclerotic Mice. PLoS ONE, 2016, 11, e0156364.	2.5	5
30	The Electronic CardioMetabolic Program (eCMP) for Patients With Cardiometabolic Risk: A Randomized Controlled Trial. Journal of Medical Internet Research, 2016, 18, e134.	4.3	35
31	A screen in mice uncovers repression of lipoprotein lipase by microRNAâ€29a as a mechanism for lipid distribution away from the liver. Hepatology, 2015, 61, 141-152.	7.3	54
32	Hypothalamic Inflammation in the Control of Metabolic Function. Annual Review of Physiology, 2015, 77, 131-160.	13.1	151
33	Microglia Dictate the Impact of Saturated Fat Consumption on Hypothalamic Inflammation and Neuronal Function. Cell Reports, 2014, 9, 2124-2138.	6.4	468
34	Angiopoietin-like 4 (Angptl4) Protein Is a Physiological Mediator of Intracellular Lipolysis in Murine Adipocytes. Journal of Biological Chemistry, 2012, 287, 8444-8456.	3.4	85
35	Angiopoietin-like 4 (Angptl4). Adipocyte, 2012, 1, 182-187.	2.8	34
36	DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation. Journal of Clinical Investigation, 2010, 120, 756-767.	8.2	189

SUNEIL K KOLIWAD

#	Article	IF	CITATIONS
37	Angiopoietin-like 4 (ANGPTL4, Fasting-induced Adipose Factor) Is a Direct Glucocorticoid Receptor Target and Participates in Glucocorticoid-regulated Triglyceride Metabolism. Journal of Biological Chemistry, 2009, 284, 25593-25601.	3.4	134
38	Thematic Review Series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research, 2008, 49, 2283-2301.	4.2	878
39	Oxidant stress and endothelial membrane transport. Free Radical Biology and Medicine, 1995, 19, 649-658.	2.9	47