Shinichi Sotome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factorâ€⊋ (FGFâ€⊋). Journal of Orthopaedic Research, 2010, 28, 677-686.	2.3	143
2	Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen–alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Materials Science and Engineering C, 2004, 24, 341-347.	7.3	116
3	Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone, 2007, 41, 575-583.	2.9	86
4	Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2. PLoS ONE, 2015, 10, e0116462.	2.5	72
5	Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 166-173.	3.4	67
6	Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study. Journal of Orthopaedic Science, 2016, 21, 373-380.	1.1	59
7	Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. Journal of Orthopaedic Research, 2017, 35, 1274-1282.	2.3	59
8	Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochemical and Biophysical Research Communications, 2010, 393, 812-817.	2.1	54
9	Enhancement of tissue engineered bone formation by a low pressure system improving cell seeding and medium perfusion into a porous scaffold. Biomaterials, 2006, 27, 2738-2746.	11.4	51
10	Intrathecal AAV Serotype 9-mediated Delivery of shRNA Against TRPV1 Attenuates Thermal Hyperalgesia in a Mouse Model of Peripheral Nerve Injury. Molecular Therapy, 2014, 22, 409-419.	8.2	48
11	Hybrid Grafting Using Bone Marrow Aspirate Combined With Porous β-Tricalcium Phosphate and Trephine Bone for Lumbar Posterolateral Spinal Fusion. Spine, 2012, 37, E174-E179.	2.0	46
12	Three-dimensional porous hydroxyapatite/collagen composite with rubber-like elasticity. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 393-409.	3.5	34
13	Repair of Osteochondral Defects in a Rabbit Model Using a Porous Hydroxyapatite Collagen Composite Impregnated With Bone Morphogenetic Proteinâ€2. Artificial Organs, 2015, 39, 529-535.	1.9	33
14	Fresh bone marrow introduction into porous scaffolds using a simple lowâ€pressure loading method for effective osteogenesis in a rabbit model. Journal of Orthopaedic Research, 2009, 27, 1-7.	2.3	29
15	Effects of pore size and implant volume of porous hydroxyapatite/collagen (HAp/Col) on bone formation in a rabbit bone defect model. Journal of Medical and Dental Sciences, 2008, 55, 91-9.	0.4	28
16	Effect of collagen fibril formation on bioresorbability of hydroxyapatite/collagen composites. Journal of Materials Science: Materials in Medicine, 2007, 18, 2179-2183.	3.6	27
17	Novel Cell Seeding System into a Porous Scaffold Using a Modified Low-Pressure Method to Enhance Cell Seeding Efficiency and Bone Formation. Cell Transplantation, 2007, 16, 729-739.	2.5	26
18	After repeated division, bone marrow stromal cells express inhibitory factors with osteogenic capabilities, and EphA5 is a primary candidate. Bone, 2013, 57, 343-354.	2.9	24

Shinichi Sotome

#	Article	IF	CITATIONS
19	Bone Regeneration with Autologous Plasma, Bone Marrow Stromal Cells, and Porous β-Tricalcium Phosphate in Nonhuman Primates. Tissue Engineering - Part A, 2009, 15, 1489-1499.	3.1	23
20	Bone Defect Regeneration by a Combination of a \hat{l}^2 -Tricalcium Phosphate Scaffold and Bone Marrow Stromal Cells in a Non-Human Primate Model. Open Biomedical Engineering Journal, 2016, 10, 2-11.	0.5	23
21	Effects of gammaâ€ray irradiation on mechanical properties, osteoconductivity, and absorption of porous hydroxyapatite/collagen. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 161-167.	3.4	22
22	Correlation of in vivo bone formation capability and in vitro differentiation of human bone marrow stromal cells. Journal of Medical and Dental Sciences, 2005, 52, 27-34.	0.4	21
23	A three-dimensional cell-loading system using autologous plasma loaded into a porous β-tricalcium-phosphate block promotes bone formation at extraskeletal sites in rats. Materials Science and Engineering C, 2007, 27, 625-632.	7.3	20
24	Augmentation of fracture healing by hydroxyapatite/collagen paste and bone morphogenetic proteinâ€⊋ evaluated using a rat femur osteotomy model. Journal of Orthopaedic Research, 2018, 36, 129-137.	2.3	18
25	Efficacy of Antibioticâ€Loaded Hydroxyapatite/Collagen Composites Is Dependent on Adsorbability for Treating <i>Staphylococcus aureus</i> Osteomyelitis in Rats. Journal of Orthopaedic Research, 2020, 38, 843-851.	2.3	16
26	Biomechanical evaluation of the rabbit tibia after implantation of porous hydroxyapatite/collagen in a rabbit model. Journal of Orthopaedic Science, 2016, 21, 230-236.	1.1	15
27	Isolation of Osteogenic Progenitor Cells from Trabecular Bone for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 933-942.	3.1	11
28	Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells. Stem Cells International, 2016, 2016, 1-20.	2.5	10
29	Influence of gamma Irradiation on the Mechanical Strength and In Vitro Biodegradation of Porous Hydroxyapatite/Collagen Composite. Journal of the American Ceramic Society, 2006, 89, 060623005134013-???.	3.8	7
30	Massive bone reconstruction with heat-treated bone graft loaded autologous bone marrow-derived stromal cells and β-tricalcium phosphate composites in canine models. Journal of Orthopaedic Research, 2013, 31, 1308-1316.	2.3	6
31	In Vivo Evaluation of Porous Hydroxyapatite/Collagen Composite as a Carrier of OP-1 in a Rabbit PLF Model. Key Engineering Materials, 2006, 309-311, 977-980.	0.4	5
32	Low-intensity pulsed ultrasound prompts tissue-engineered bone formation after implantation surgery. Chinese Medical Journal, 2014, 127, 669-74.	2.3	4
33	Local Suppression Effect of Paclitaxel-Impregnated Hydroxyapatite/Collagen on Breast Cancer Bone Metastasis in a Rat Model. Spine Surgery and Related Research, 2022, 6, 294-302.	0.7	3
34	Myositis Ossificans Traumatica Secondary to Fracture of the Odontoid in a Five-Month-Old Infant. JBJS Case Connector, 2012, 2, e7.	0.3	1
35	Bone Regeneration Materials Based on Calcium Phosphate Ceramics. , 2008, , .		1
36	A Novel Cell-Loading Method into Porous β-TCP Blocks. Key Engineering Materials, 2006, 309-311, 993-996.	0.4	0