Patrick J Casey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920979/publications.pdf

Version: 2024-02-01

15504 12946 17,796 170 65 131 citations h-index g-index papers 172 172 172 13705 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PROTEIN PRENYLATION: Molecular Mechanisms and Functional Consequences. Annual Review of Biochemistry, 1996, 65, 241-269.	11.1	1,900
2	p21ras is modified by a farnesyl isoprenoid Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8323-8327.	7.1	855
3	Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell, 1990, 62, 81-88.	28.9	827
4	Protein lipidation in cell signaling. Science, 1995, 268, 221-225.	12.6	770
5	Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science, 1992, 257, 1264-1267.	12.6	712
6	Protein Prenyltransferases. Journal of Biological Chemistry, 1996, 271, 5289-5292.	3.4	667
7	Protein prenylation: unique fats make their mark on biology. Nature Reviews Molecular Cell Biology, 2016, 17, 110-122.	37.0	393
8	Protein farnesyltransferase and geranylgeranyltransferase share a common α subunit. Cell, 1991, 65, 429-434.	28.9	377
9	Crystal Structure of Protein Farnesyltransferase at 2.25 Angstrom Resolution. Science, 1997, 275, 1800-1805.	12.6	366
10	RGS10 is a selective activator of Gαi GTPase activity. Nature, 1996, 383, 175-177.	27.8	346
11	Evidence that direct binding of $G\hat{l}^2\hat{l}^3$ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron, 1995, 15, 1133-1143.	8.1	316
11	Evidence that direct binding of Gî²î³ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron, 1995, 15, 1133-1143. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer, 2005, 5, 405-412.	8.1	316
	important for channel activation. Neuron, 1995, 15, 1133-1143. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer, 2005, 5,		
12	important for channel activation. Neuron, 1995, 15, 1133-1143. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer, 2005, 5, 405-412. Site-specific analysis of protein S-acylation by resin-assisted capture. Journal of Lipid Research, 2011, 52,	28.4	315
12	important for channel activation. Neuron, 1995, 15, 1133-1143. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer, 2005, 5, 405-412. Site-specific analysis of protein S-acylation by resin-assisted capture. Journal of Lipid Research, 2011, 52, 393-398. Myristoylated alpha subunits of guanine nucleotide-binding regulatory proteins Proceedings of the	28.4	315 299
12 13 14	Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer, 2005, 5, 405-412. Site-specific analysis of protein S-acylation by resin-assisted capture. Journal of Lipid Research, 2011, 52, 393-398. Myristoylated alpha subunits of guanine nucleotide-binding regulatory proteins Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7493-7497. G protein gamma subunits contain a 20-carbon isoprenoid Proceedings of the National Academy of	28.4 4.2 7.1	315 299 295
12 13 14	important for channel activation. Neuron, 1995, 15, 1133-1143. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer, 2005, 5, 405-412. Site-specific analysis of protein S-acylation by resin-assisted capture. Journal of Lipid Research, 2011, 52, 393-398. Myristoylated alpha subunits of guanine nucleotide-binding regulatory proteins Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7493-7497. G protein gamma subunits contain a 20-carbon isoprenoid Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5873-5877. Signalling functions and biochemical properties of pertussis toxin-resistant C-proteins. Biochemical	28.4 4.2 7.1	315 299 295 259

#	Article	IF	CITATIONS
19	Lipid modifications of G proteins. Current Opinion in Cell Biology, 1994, 6, 219-225.	5.4	191
20	Reaction path of protein farnesyltransferase at atomic resolution. Nature, 2002, 419, 645-650.	27.8	183
21	Farnesyltransferase Inhibitors Alter the Prenylation and Growth-stimulating Function of RhoB. Journal of Biological Chemistry, 1997, 272, 15591-15594.	3.4	179
22	Enzymatic modification of proteins with a geranylgeranyl isoprenoid Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8631-8635.	7.1	174
23	Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry, 1995, 34, 6857-6862.	2.5	173
24	A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4336-4341.	7.1	168
25	Cocrystal Structure of Protein Farnesyltransferase Complexed with a Farnesyl Diphosphate Substrateâ€,‡. Biochemistry, 1998, 37, 9612-9618.	2.5	164
26	Disruption of the Mouse Rce1 Gene Results in Defective Ras Processing and Mislocalization of Ras within Cells. Journal of Biological Chemistry, 1999, 274, 8383-8390.	3.4	161
27	Rap1 GTPase Inhibits Leukocyte Transmigration by Promoting Endothelial Barrier Function. Journal of Biological Chemistry, 2005, 280, 11675-11682.	3.4	152
28	The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8173-8178.	7.1	150
29	Targeted Inactivation of the Isoprenylcysteine Carboxyl Methyltransferase Gene Causes Mislocalization of K-Ras in Mammalian Cells. Journal of Biological Chemistry, 2000, 275, 17605-17610.	3.4	148
30	Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. Journal of Clinical Investigation, 2004, 113, 539-550.	8.2	147
31	Isoprenylcysteine Carboxyl Methyltransferase Deficiency in Mice. Journal of Biological Chemistry, 2001, 276, 5841-5845.	3.4	146
32	G protein .betagamma. subunits from bovine brain and retina: equivalent catalytic support of ADP-ribosylation of .alpha. subunits by pertussis toxin but differential interactions with Gs.alpha Biochemistry, 1989, 28, 611-616.	2.5	144
33	Absence of the CAAX Endoprotease Rce1: Effects on Cell Growth and Transformation. Molecular and Cellular Biology, 2002, 22, 171-181.	2.3	144
34	Evidence of a role for heterotrimeric GTP-binding proteins in endosome fusion. Science, 1992, 255, 1695-1697.	12.6	141
35	Cloning and Characterization of a Mammalian Prenyl Protein-specific Protease. Journal of Biological Chemistry, 1999, 274, 8379-8382.	3.4	140
36	Targeting Ras signaling through inhibition of carboxyl methylation: An unexpected property of methotrexate. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6529-6534.	7.1	140

#	Article	IF	Citations
37	Involvement of a Mitochondrial Phosphatase in the Regulation of ATP Production and Insulin Secretion in Pancreatic $\hat{\Gamma}^2$ Cells. Molecular Cell, 2005, 19, 197-207.	9.7	138
38	Overview of the Alliance for Cellular Signaling. Nature, 2002, 420, 703-706.	27.8	134
39	Evidence for a Catalytic Role of Zinc in Protein Farnesyltransferase. Journal of Biological Chemistry, 1997, 272, 20-23.	3.4	128
40	Activation of Rap1 Promotes Prostate Cancer Metastasis. Cancer Research, 2009, 69, 4962-4968.	0.9	126
41	Biologic Functions of the G12 Subfamily of Heterotrimeric G Proteins: Growth, Migration, and Metastasisâ€. Biochemistry, 2007, 46, 6677-6687.	2.5	125
42	A Role for the G12 Family of Heterotrimeric G Proteins in Prostate Cancer Invasion. Journal of Biological Chemistry, 2006, 281, 26483-26490.	3.4	122
43	RGSZ1, a Gz-selective Regulator of G Protein Signaling Whose Action Is Sensitive to the Phosphorylation State of Gzĺ±. Journal of Biological Chemistry, 1998, 273, 26008-26013.	3.4	116
44	Structure of mammalian protein geranylgeranyltransferase type-l. EMBO Journal, 2003, 22, 5963-5974.	7.8	116
45	Identification of a Role for \hat{l}^2 -Catenin in the Establishment of a Bipolar Mitotic Spindle. Journal of Biological Chemistry, 2004, 279, 10829-10832.	3.4	114
46	The basis for K-Ras4B binding specificity to protein farnesyl-transferase revealed by 2 Ã resolution ternary complex structures. Structure, 2000, 8, 209-222.	3.3	112
47	Prenylation-dependent Association of Ki-Ras with Microtubules. Journal of Biological Chemistry, 1997, 272, 30362-30370.	3.4	106
48	Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 2005, 7, 313-324.	16.8	106
49	$Gl\pm 12$ and $Gl\pm 13$ Negatively Regulate the Adhesive Functions of Cadherin. Journal of Biological Chemistry, 2002, 277, 24594-24600.	3.4	104
50	A Small Molecule Inhibitor of Isoprenylcysteine Carboxymethyltransferase Induces Autophagic Cell Death in PC3 Prostate Cancer Cells. Journal of Biological Chemistry, 2008, 283, 18678-18684.	3.4	102
51	GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS–induced lung cancer. Journal of Clinical Investigation, 2007, 117, 1294-1304.	8.2	101
52	H-Ras Peptide and Protein Substrates Bind Protein Farnesyltransferase as an Ionized Thiolate. Biochemistry, 1998, 37, 15555-15562.	2.5	99
53	Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. Journal of Clinical Investigation, 2004, 113, 539-550.	8.2	95
54	Phosphorylation of $Gz\hat{l}_{\pm}$ by Protein Kinase C Blocks Interaction with the $\hat{l}^2\hat{l}^3$ Complex. Journal of Biological Chemistry, 1995, 270, 23119-23125.	3.4	93

#	Article	IF	CITATIONS
55	Phosphorylation and Nuclear Translocation of a Regulator of G Protein Signaling (RGS10). Journal of Biological Chemistry, 2001, 276, 32828-32834.	3.4	90
56	Substrate Binding Is Required for Release of Product from Mammalian Protein Farnesyltransferase. Journal of Biological Chemistry, 1997, 272, 9989-9993.	3.4	88
57	The Hepatitis Delta Virus Large Antigen Is Farnesylated Both in Vitro and in Animal Cells. Journal of Biological Chemistry, 1996, 271, 4569-4572.	3.4	82
58	Functional Interaction between $\widehat{Gl}\pm z$ and Rap1GAP Suggests a Novel Form of Cellular Cross-talk. Journal of Biological Chemistry, 1999, 274, 36663-36669.	3.4	81
59	High Affinity for Farnesyltransferase and Alternative Prenylation Contribute Individually to K-Ras4B Resistance to Farnesyltransferase Inhibitors. Journal of Biological Chemistry, 2003, 278, 41718-41727.	3.4	80
60	The C-terminal Polylysine Region and Methylation of K-Ras Are Critical for the Interaction between K-Ras and Microtubules. Journal of Biological Chemistry, 2000, 275, 41251-41257.	3.4	78
61	Pertussis-toxin-sensitive $\widehat{Gl}\pm$ subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Molecular and Cellular Neurosciences, 2005, 28, 375-389.	2.2	77
62	MicroRNA-182 and MicroRNA-200a Control G-protein Subunit $\hat{l}\pm -13$ (GNA13) Expression and Cell Invasion Synergistically in Prostate Cancer Cells. Journal of Biological Chemistry, 2013, 288, 7986-7995.	3.4	76
63	Novel localization of a G protein, Gz-alpha, in neurons of brain and retina. Journal of Neuroscience, 1990, 10, 2763-2770.	3.6	73
64	Androgen Receptor Activation by Gs Signaling in Prostate Cancer Cells. Journal of Biological Chemistry, 2005, 280, 11583-11589.	3.4	71
65	MicroRNA-31 controls G protein alpha-13 (GNA13) expression and cell invasion in breast cancer cells. Molecular Cancer, 2015, 14, 67.	19.2	67
66	The role of prenylation in G-protein assembly and function. Cellular Signalling, 1996, 8, 433-437.	3.6	66
67	Activation of Gz Attenuates Rap1-mediated Differentiation of PC12 Cells. Journal of Biological Chemistry, 2002, 277, 43417-43424.	3.4	64
68	Deciphering the signaling networks underlying simvastatin-induced apoptosis in human cancer cells: evidence for non-canonical activation of RhoA and Rac1 GTPases. Cell Death and Disease, 2013, 4, e568-e568.	6.3	64
69	A Novel Protein Geranylgeranyltransferase-I Inhibitor with High Potency, Selectivity, and Cellular Activity*. Journal of Biological Chemistry, 2006, 281, 12445-12450.	3.4	62
70	Inhibition of isoprenylcysteine carboxylmethyltransferase induces autophagic-dependent apoptosis and impairs tumor growth. Oncogene, 2010, 29, 4959-4970.	5.9	62
71	Role of G12 proteins in oncogenesis and metastasis. British Journal of Pharmacology, 2009, 158, 32-40.	5.4	59
72	On the Physiological Importance of Endoproteolysis of CAAX Proteins. Journal of Biological Chemistry, 2004, 279, 4729-4736.	3.4	57

#	Article	IF	CITATIONS
73	Kinetic Studies of Protein Farnesyltransferase Mutants Establish Active Substrate Conformationâ€. Biochemistry, 2003, 42, 9741-9748.	2.5	55
74	Influence of metal ions on substrate binding and catalytic activity of mammalian protein geranylgeranyltransferase type-I. Biochemical Journal, 1996, 320, 925-932.	3.7	54
75	Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 584-592.	2.5	53
76	An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biology and Therapy, 2014, 15, 1280-1291.	3.4	53
77	GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo. Blood, 2016, 127, 2723-2731.	1.4	52
78	Arachidonate and Related Unsaturated Fatty Acids Selectively Inactivate the Guanine Nucleotide-binding Regulatory Protein, Gzα. Journal of Biological Chemistry, 1996, 271, 2949-2954.	3.4	49
79	Kinetic Analysis of Zinc Ligand Mutants of Mammalian Protein Farnesyltransferaseâ€. Biochemistry, 1998, 37, 4465-4472.	2.5	48
80	Rac1, a low-molecular-mass GTP-binding-protein with high intrinsic GTPase activity and distinct biochemical properties. FEBS Journal, 1992, 206, 537-546.	0.2	47
81	Distinct Regions of the Cadherin Cytoplasmic Domain Are Essential for Functional Interaction with $\hat{Gl}\pm 12$ and \hat{I}^2 -Catenin. Journal of Biological Chemistry, 2001, 276, 44037-44043.	3.4	47
82	Inhibition of Isoprenylcysteine Carboxylmethyltransferase Induces Cell-Cycle Arrest and Apoptosis through p21 and p21-Regulated BNIP3 Induction in Pancreatic Cancer. Molecular Cancer Therapeutics, 2017, 16, 914-923.	4.1	47
83	A Global Partnership in Medical Education Between Duke University and the National University of Singapore. Academic Medicine, 2008, 83, 122-127.	1.6	46
84	Rho GTPase activity modulates Wnt3a/l²-catenin signaling. Cellular Signalling, 2009, 21, 1559-1568.	3.6	46
85	A Role for Gz in Pancreatic Islet β-Cell Biology. Journal of Biological Chemistry, 2005, 280, 31708-31713.	3.4	44
86	Gαz Negatively Regulates Insulin Secretion and Glucose Clearance. Journal of Biological Chemistry, 2008, 283, 4560-4567.	3.4	44
87	Amino Derivatives of Indole As Potent Inhibitors of Isoprenylcysteine Carboxyl Methyltransferase. Journal of Medicinal Chemistry, 2010, 53, 6838-6850.	6.4	44
88	Role of Isoprenylcysteine Carboxylmethyltransferase-catalyzed Methylation in Rho Function and Migration. Journal of Biological Chemistry, 2009, 284, 27964-27973.	3.4	43
89	Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Experimental and Molecular Medicine, 2014, 46, e102-e102.	7.7	43
90	Identification of a Cysteine Residue Essential for Activity of Protein Farnesyltransferase. Journal of Biological Chemistry, 1996, 271, 28541-28548.	3.4	41

#	Article	IF	CITATIONS
91	The Regulator of G Protein Signaling Domain of Axin Selectively Interacts with $\widehat{Gl}\pm 12$ but Not $\widehat{Gl}\pm 13$. Molecular Pharmacology, 2006, 70, 1461-1468.	2.3	41
92	Substitution of Cadmium for Zinc in Farnesyl:Protein Transferase Alters Its Substrate Specificityâ€. Biochemistry, 1996, 35, 8166-8171.	2.5	39
93	Deletion of $\widehat{Gl}\pm Z$ Protein Protects against Diet-induced Glucose Intolerance via Expansion of \widehat{I}^2 -Cell Mass. Journal of Biological Chemistry, 2012, 287, 20344-20355.	3.4	39
94	Breast cancer cell invasion mediated by $\hat{Gl}\pm 12$ signaling involves expression of interleukins-6 and \hat{a} '8, and matrix metalloproteinase-2. Journal of Molecular Signaling, 2014, 9, 6.	0.5	39
95	Isolation and Characterization of a Prenylcysteine Lyase from Bovine Brain. Journal of Biological Chemistry, 1997, 272, 23354-23359.	3.4	38
96	Characterization of Prenylcysteines That Interact with P-glycoprotein and Inhibit Drug Transport in Tumor Cells. Journal of Biological Chemistry, 1995, 270, 22859-22865.	3.4	37
97	Lysosomal Prenylcysteine Lyase Is a FAD-dependent Thioether Oxidase. Journal of Biological Chemistry, 2001, 276, 2321-2324.	3.4	37
98	Selective Uncoupling of G \hat{i} ±12 from Rho-mediated Signaling. Journal of Biological Chemistry, 2005, 280, 18049-18055.	3.4	37
99	GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers. Oncogene, 2018, 37, 1340-1353.	5.9	37
100	Discovery of Geranylgeranyltransferase-I Inhibitors with Novel Scaffolds by the Means of Quantitative Structureâ^'Activity Relationship Modeling, Virtual Screening, and Experimental Validation. Journal of Medicinal Chemistry, 2009, 52, 4210-4220.	6.4	36
101	Rap1 Promotes Multiple Pancreatic Islet Cell Functions and Signals through Mammalian Target of Rapamycin Complex 1 to Enhance Proliferation. Journal of Biological Chemistry, 2010, 285, 15777-15785.	3.4	36
102	A Prenylated p47 -p67 -Rac1 Chimera Is a Quintessential NADPH Oxidase Activator. Journal of Biological Chemistry, 2010, 285, 25485-25499.	3.4	36
103	Analysis of the kinetic mechanism of recombinant human isoprenylcysteine carboxylmethyltransferase (Icmt). BMC Biochemistry, 2004, 5, 19.	4.4	35
104	The Interaction of RGSZ1 with SCG10 Attenuates the Ability of SCG10 to Promote Microtubule Disassembly. Journal of Biological Chemistry, 2002, 277, 18127-18133.	3.4	34
105	Conversion of Protein Farnesyltransferase to a Geranylgeranyltransferaseâ€. Biochemistry, 2006, 45, 9746-9755.	2.5	32
106	Mechanisms of protein prenylation and role in G protein function. Biochemical Society Transactions, 1995, 23, 161-166.	3.4	31
107	Non-peptidic, non-prenylic inhibitors of the prenyl protein-specific protease Rce1. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 425-427.	2.2	31
108	Reciprocal Signaling between the Transcriptional Co-Factor Eya2 and Specific Members of the $G\hat{l}\pm i$ Family. Molecular Pharmacology, 2004, 66, 1325-1331.	2.3	31

#	Article	lF	CITATIONS
109	A Role for Rac3 GTPase in the Regulation of Autophagy. Journal of Biological Chemistry, 2011, 286, 35291-35298.	3.4	31
110	Prenylated C17orf37 Induces Filopodia Formation to Promote Cell Migration and Metastasis. Journal of Biological Chemistry, 2011, 286, 25935-25946.	3.4	31
111	p21cip1/waf1 Coordinates Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers, 2019, 11, 1112.	3.7	31
112	Cloning, Expression, and Cellular Localization of a Human Prenylcysteine Lyase. Journal of Biological Chemistry, 1999, 274, 35802-35808.	3.4	29
113	Topology of Mammalian Isoprenylcysteine Carboxyl Methyltransferase Determined in Live Cells with a Fluorescent Probe. Molecular and Cellular Biology, 2009, 29, 1826-1833.	2.3	29
114	Subtype-Specific Binding of Azidoanilido-GTP by Purified G Protein .alpha. Subunits. Biochemistry, 1994, 33, 6877-6883.	2.5	26
115	Functionalized indoleamines as potent, drug-like inhibitorsÂof isoprenylcysteineÂcarboxyl methyltransferase (lcmt). European Journal of Medicinal Chemistry, 2013, 63, 378-386.	5.5	26
116	[2] Isolation of protein prenyltransferases from bovine brain and baculovirus expression system. Methods in Enzymology, 1995, 250, 12-21.	1.0	25
117	RHO methylation matters. Cell Adhesion and Migration, 2011, 5, 11-15.	2.7	25
118	Time-Dependent Inhibition of Isoprenylcysteine Carboxyl Methyltransferase by Indole-Based Small Moleculesâ€. Biochemistry, 2007, 46, 554-560.	2.5	23
119	Prenylcysteine Lyase Deficiency in Mice Results in the Accumulation of Farnesylcysteine and Geranylgeranylcysteine in Brain and Liver. Journal of Biological Chemistry, 2002, 277, 38358-38363.	3.4	21
120	G12 Signaling through c-Jun NH2-Terminal Kinase Promotes Breast Cancer Cell Invasion. PLoS ONE, 2011, 6, e26085.	2.5	21
121	Kinetics of Protein Farnesyltransferase: Sigmoidal vs Hyperbolic Behavior as a Function of Assay Conditions. Analytical Biochemistry, 1996, 243, 80-85.	2.4	19
122	Farnesylation of Nonpeptidic Thiol Compounds by Protein Farnesyltransferaseâ€. Biochemistry, 2001, 40, 1002-1010.	2.5	19
123	Stereospecificity and Kinetic Mechanism of Human Prenylcysteine Lyase, an Unusual Thioether Oxidase. Journal of Biological Chemistry, 2002, 277, 41086-41093.	3.4	18
124	Respiratory Capacity and Reserve Predict Cell Sensitivity to Mitochondria Inhibitors: Mechanism-Based Markers to Identify Metformin-Responsive Cancers. Molecular Cancer Therapeutics, 2019, 18, 693-705.	4.1	18
125	Genetic and Pharmacologic Analyses of the Role of Icmt in Ras Membrane Association and Function. Methods in Enzymology, 2006, 407, 144-159.	1.0	17
126	Improved Loading and Cleavage Methods for Solid-Phase Synthesis Using Chlorotrityl Resins:Â Synthesis and Testing of a Library of 144 Discrete Chemicals as Potential Farnesyltransferase Inhibitors. ACS Combinatorial Science, 2004, 6, 407-413.	3.3	16

#	Article	IF	CITATIONS
127	Effects of Pharmacologic Inhibition of Protein Geranylgeranyltransferase Type I on Aqueous Humor Outflow through the Trabecular Meshwork. , 2008, 49, 2464.		16
128	Control of RhoA Methylation by Carboxylesterase I. Journal of Biological Chemistry, 2013, 288, 19177-19183.	3.4	16
129	Visual differences. Nature, 1992, 359, 671-672.	27.8	15
130	Protein Geranylgeranyltransferase Type 1 as a Target in Cancer. Current Cancer Drug Targets, 2016, 16, 563-571.	1.6	15
131	The emerging roles of $\widehat{Gl}\pm 12/13$ proteins on the hallmarks of cancer in solid tumors. Oncogene, 2022, 41, 147-158.	5.9	15
132	c-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells. Molecules, 2017, 22, 612.	3.8	14
133	Gα-13 induces CXC motif chemokine ligand 5 expression in prostate cancer cells by transactivating NF-κB. Journal of Biological Chemistry, 2019, 294, 18192-18206.	3.4	14
134	Prenylation and G Protein Signaling. , 1994, 49, 215-238.		14
135	Gαz regulates BDNF-induction of axon growth in cortical neurons. Molecular and Cellular Neurosciences, 2014, 58, 53-61.	2.2	13
136	[27] Assay of g-protein $\hat{l}^2\hat{l}^3$ -subunit complex by catalytic support of ADP-ribosylation of Go \hat{l}_\pm . Methods in Enzymology, 1991, 195, 315-321.	1.0	12
137	The GNA13-RhoA signaling axis suppresses expression of tumor protective Kallikreins. Cellular Signalling, 2016, 28, 1479-1488.	3.6	12
138	Inhibition of adenylosuccinate lyase by L-alanosyl-5-aminoimidazole-4-carboxylic acid ribonucleotide (alanosyl-aicor). Biochemical Pharmacology, 1987, 36, 705-709.	4.4	11
139	Conversion of Tyr361β to Leu in Mammalian Protein Farnesyltransferase Impairs Product Release but Not Substrate Recognitionâ€. Biochemistry, 2000, 39, 13651-13659.	2.5	11
140	Lysine $164\hat{l}_{\pm}$ of protein farnesyltransferase is important for both CaaX substrate binding and catalysis. Biochemical Journal, 2001, 360, 625-631.	3.7	11
141	Inhibition of isoprenylcysteine carboxylmethyltransferase augments BCR-ABL1 tyrosine kinase inhibition-induced apoptosis in chronic myeloid leukemia. Experimental Hematology, 2016, 44, 189-193.e2.	0.4	11
142	Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal. Oncogene, 2020, 39, 5373-5389.	5.9	11
143	Quantitative structure–activity relationship (QSAR) of indoloacetamides as inhibitors of human isoprenylcysteine carboxyl methyltransferase. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1025-1032.	2.2	10
144	Analysis of the Molecular Interaction of the Farnesyl Moiety of Transducin through the Use of a Photoreactive Farnesyl Analogue. Biochemistry, 2004, 43, 300-309.	2.5	8

#	Article	IF	CITATIONS
145	Analysis of the Regulation of Microtubule Dynamics by Interaction of RGSZ1 (RGS20) with the Neuronal Stathmin, SCG10. Methods in Enzymology, 2004, 390, 53-64.	1.0	8
146	Prenylation of CaaX-type proteins: Basic principles through clinical applications. Current Topics in Membranes, 2002, , 531-550.	0.9	7
147	Interacting Targets of the Farnesyl of Transducin Î ³ -Subunit. Biochemistry, 2008, 47, 8424-8433.	2.5	7
148	Signaling Through Gz. , 2010, , 1649-1653.		7
149	Evaluating the Epithelial-Mesenchymal Program in Human Breast Epithelial Cells Cultured in Soft Agar Using a Novel Macromolecule Extraction Protocol. Cancers, 2021, 13, 807.	3.7	7
150	Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif). PLoS ONE, 2017, 12, e0171464.	2.5	7
151	Lysine $164\hat{l}_{\pm}$ of protein farnesyltransferase is important for both CaaX substrate binding and catalysis. Biochemical Journal, 2001, 360, 625.	3.7	5
152	1 Mechanism of catalysis by protein farnesyltransferase. The Enzymes, 2001, , 1-18.	1.7	4
153	A high-performance liquid chromatography method for the quantification of cysmethynil, an inhibitor of isoprenylcysteine carboxylmethyl transferase, in mouse plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 553-557.	2.3	4
154	[14] Prenylated peptides in identification of specific binding proteins. Methods in Enzymology, 1995, 250, 158-168.	1.0	3
155	The Enzymology of CAAX Protein Prenylation. The Enzymes, 2011, 30, 1-11.	1.7	2
156	Can prenylcysteines be exploited as ligands for mammalian multidrug-resistance transporters?. Chemistry and Biology, 1997, 4, 711-715.	6.0	1
157	Suppression of isoprenylcysteine carboxylmethyltransferase compromises DNA damage repair. Life Science Alliance, 2021, 4, e202101144.	2.8	1
158	Signaling through Gz., 2003,, 601-604.		1
159	The effects of Gαz signaling on pancreatic βâ€cell function and mass. FASEB Journal, 2012, 26, 615.7.	0.5	1
160	[8] Assays for G protein $\hat{l}^2\hat{l}^3$ subunit activity. Methods in Neurosciences, 1996, 29, 90-100.	0.5	0
161	Protein farnesyltransferase, beta subunit. The AFCS-nature Molecule Pages, 0, , .	0.2	0
162	Icmt. The AFCS-nature Molecule Pages, 0, , .	0.2	0

#	ARTICLE	IF	CITATIONS
163	Advantage of 2Dâ€QSAR in the discovery of novel protein geranylgeranyltransferase inhibitor (GGTI) scaffolds. FASEB Journal, 2008, 22, 720.6.	0.5	0
164	G12 signaling through JNK promotes breast cancer cell invasion. FASEB Journal, 2008, 22, 1044.1.	0.5	0
165	Rap1 promotes Prostate Cancer metastasis. FASEB Journal, 2008, 22, 1029.7.	0.5	0
166	Gα z negatively regulates insulin secretion and glucose clearance. FASEB Journal, 2008, 22, 646.7.	0.5	0
167	Analogues of cysmethynil that demonstrate improved isoprenylcysteine carboxymethyltransferase (Icmt) inhibition activity and antiproliferative activity in MDAâ€MBâ€231 breast cancer cells. FASEB Journal, 2009, 23, 676.3.	0.5	0
168	Targeting Isoprenylcysteine Carboxyl Methyltransferase to Overcome Resistance and Improve Responses in Chronic Myeloid Leukemia Blood, 2009, 114, 3273-3273.	1.4	0
169	Lipid Modifications of GTP-Binding Regulatory Proteins. , 1993, , 45-54.		O
170	Protein farnesyltransferase exhibits pH-dependent activity towards H-Ras peptide substrates. , 2002, , 463-464.		O