
Tadanobu Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inverse Temperature Dependence of Toughness in an Ultrafine Grain-Structure Steel. Science, 2008, 320, 1057-1060.	6.0	330
2	Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 341-355.	1.1	141
3	Ultrafine Grain Structure through Dynamic Recrystallization for Type 304 Stainless Steel ISIJ International, 2002, 42, 744-750.	0.6	81
4	Band gap engineering of SrTiO 3 for water splitting under visible light irradiation. International Journal of Hydrogen Energy, 2014, 39, 12507-12514.	3.8	79
5	Delamination Toughening of Ultrafine Grain Structure Steels Processed through Tempforming at Elevated Temperatures. ISIJ International, 2010, 50, 152-161.	0.6	75
6	Parameters for the Evaluation of Hydrogen Embrittlement of High Strength Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 689-696.	0.1	65
7	Effect of twin boundary segregation on damping properties in magnesium alloy. Scripta Materialia, 2017, 129, 35-38.	2.6	62
8	Hydrogen Embrittlement of a 1500-MPa Tensile Strength Level Steel with an Ultrafine Elongated Grain Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1670-1687.	1.1	61
9	Effect of alloying elements on room temperature tensile ductility in magnesium alloys. Philosophical Magazine, 2016, 96, 2671-2685.	0.7	58
10	Strengthening Mg–Al–Zn alloy by repetitive oblique shear strain with caliber roll. Scripta Materialia, 2010, 62, 113-116.	2.6	52
11	Effect of initial grain sizes on hardness variation and strain distribution of pure aluminum severely deformed by compression tests. Acta Materialia, 2008, 56, 6291-6303.	3.8	50
12	Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 48-57.	2.6	47
13	Formation of uniformly fine grained ferrite structure through multidirectional deformation. Materials Science and Technology, 2001, 17, 1329-1338.	0.8	46
14	Influence of Warm Tempforming on Microstructure and Mechanical Properties in an Ultrahigh-Strength Medium-Carbon Low-Alloy Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 560-576.	1.1	46
15	Fracture Toughness of a Crystalline Silicon Carbide Fiber (Tyranno-SA3R). Journal of the American Ceramic Society, 2006, 89, 2571-2576.	1.9	43
16	Effect of solute atoms on fracture toughness in dilute magnesium alloys. Philosophical Magazine, 2013, 93, 4582-4592.	0.7	39
17	Excellent room temperature deformability in high strain rate regimes of magnesium alloy. Scientific Reports, 2018, 8, 656.	1.6	37
18	Fiber texture and substructural features in the caliber-rolled low-carbon steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 665-677.	1.1	35

#	Article	IF	CITATIONS
19	Microstructural evolution during dry wear test in magnesium and Mg–Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 371-377.	2.6	34
20	Uniform Formation of Fine Grained Ferrite Structure through Multi-directional Deformation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 801-806.	0.1	34
21	Quantification of strain in accumulative roll-bonding under unlubricated condition by finite element analysis. Computational Materials Science, 2009, 46, 261-266.	1.4	33
22	Hardness Variation and Strain Distribution in Magnesium Alloy AZ31 Processed by Multiâ€pass Caliber Rolling. Advanced Engineering Materials, 2009, 11, 654-658.	1.6	32
23	Enhancement of toughness by grain boundary control in magnesium binary alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 172-178.	2.6	31
24	Effect of shear deformation on refinement of crystal grains. Materials Science and Technology, 2002, 18, 1007-1015.	0.8	30
25	Effect of plastic strain on grain size of ferrite transformed from deformed austenite in Si-Mn steel. Materials Science and Technology, 2001, 17, 1580-1588.	0.8	29
26	A New Evaluation Method of Hydrogen Embrittlement Fracture for High Strength Steel by Local Approach. ISIJ International, 2005, 45, 263-271.	0.6	29
27	Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel. Science and Technology of Advanced Materials, 2012, 13, 035005.	2.8	28
28	Tempforming in medium-carbon low-alloy steel. Journal of Alloys and Compounds, 2013, 577, S538-S542.	2.8	28
29	Influence of the intermediate material on the order of stress singularity in three-phase bonded structure. International Journal of Solids and Structures, 1996, 33, 399-417.	1.3	26
30	Shear-lag simulation of the progress of interfacial debonding in unidirectional composites. Composites Science and Technology, 1999, 59, 77-88.	3.8	26
31	Static fracture toughness of fail-safe steel. Scripta Materialia, 2011, 65, 552-555.	2.6	26
32	Deformation mechanism near crack-tip by finite element analysis and microstructure observation in magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1761-1768.	2.6	25
33	Influence of Carbon Content on Toughening in Ultrafine Elongated Grain Structure Steels. ISIJ International, 2015, 55, 1135-1144.	0.6	25
34	Crystallographic Texture of Warm Caliber-rolled Low Carbon Steel. Materials Transactions, 2007, 48, 2028-2035.	0.4	24
35	Highly active SrTiO3 for visible light photocatalysis: A first-principles prediction. Solid State Communications, 2014, 181, 5-8.	0.9	24
36	Improvement of strength, toughness and ductility in ultrafine-grained low-carbon steel processed by warm bi-axial rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139415.	2.6	24

#	Article	IF	CITATIONS
37	Effect of initial notch orientation on fracture toughness in fail-safe steel. Journal of Materials Science, 2013, 48, 4766-4772.	1.7	22
38	Mechanical Property of Ultrafine Elongated Grain Structure Steel Processed by Warm Tempforming and Its Application to Ultra-High-Strength Bolt. ISIJ International, 2020, 60, 1108-1126.	0.6	22
39	Dynamic Restoration Process of Ni-30Fe Alloy during Hot Deformation ISIJ International, 2002, 42, 432-439.	0.6	21
40	Finite element simulation of accumulative roll-bonding process. Materials Letters, 2013, 106, 37-40.	1.3	21
41	Warm tempforming effect on the hydrogen embrittlement of 1.8-GPa-class ultra-high-strength low-alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 503-512.	2.6	20
42	Ductile-to-Brittle Transition and Brittle Fracture Stress of Ultrafine-Grained Low-Carbon Steel. Materials, 2021, 14, 1634.	1.3	20
43	Enhancing Fracture Toughness of Magnesium Alloy by Formation of Lowâ€Angle Grain Boundary Structure. Advanced Engineering Materials, 2010, 12, 837-842.	1.6	19
44	Electronic structure calculations of I and Mn doped BiOCl with modified Becke–Johnson potential. Computational Materials Science, 2014, 85, 138-141.	1.4	19
45	Evaluation of Hydrogen Embrittlement Susceptibility of High Strength Steel by the Weibull Stress. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 1073-1081.	0.2	19
46	Influences of residual stresses, frictional shear stress at debonded interface and interactions among broken components on interfacial debonding in unidirectional multi-filamentary composites. Composite Interfaces, 1997, 5, 363-381.	1.3	18
47	Numerical Analysis of Plastic Strain Distribution through Multi-directional Deformation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 793-800.	0.1	18
48	Recrystallization and Grain Growth Behavior in Severe Cold-rolling Deformed SUS316L Steel under Anisothermal Annealing Condition. ISIJ International, 2008, 48, 475-482.	0.6	15
49	Yield stress of duplex stainless steel specimens estimated using a compound Hall–Petch equation. Science and Technology of Advanced Materials, 2010, 11, 025004.	2.8	15
50	Crack propagation behaviour in magnesium binary alloys. Philosophical Magazine, 2014, 94, 3317-3330.	0.7	15
51	Stress Singularity in Three-Phase Bonded Structure. Journal of Applied Mechanics, Transactions ASME, 1996, 63, 252-258.	1.1	14
52	Tensile Test Specimens with a Circumferential Precrack for Evaluation of Interfacial Toughness of Thermal-Sprayed Coatings. Journal of Thermal Spray Technology, 2008, 17, 228-233.	1.6	14
53	Experimental measurement of the variables of Lüders deformation in hot-rolled steel via digital image correlation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139756.	2.6	14
54	Ultrafine-grained Steel Bars Fabricated Using Commercial Caliber-rolling. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2008, 94, 164-172.	0.1	14

#	Article	IF	CITATIONS
55	Distributions of Strain, Microstructure and Hardness in a Bar Steel with Ultrafine-Grained Structure through Groove Rolling. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 943-952.	0.2	13
56	Influence of Prior-Austenite Grain Structure on the Mechanical Properties of Ultrafine Elongated Grain Structure Steel Processed by Warm Tempforming. ISIJ International, 2015, 55, 1762-1771.	0.6	13
57	Serration of Grain Boundary in Ni-300Fe Alloy through High Temperature Deformation ISIJ International, 2002, 42, 1026-1032.	0.6	12
58	Effect of Shear Deformation on Microstructural Evolution of Ni-30Fe Alloy during Hot Deformation. Materials Transactions, 2004, 45, 2966-2973.	0.4	12
59	Effect of deformation twin on toughness in magnesium binary alloys. Philosophical Magazine, 2015, 95, 2513-2526.	0.7	12
60	Development of Isotropic and Accordion-Like Deformable Magnesium Alloys. Materials Transactions, 2017, 58, 1089-1092.	0.4	12
61	In-Situ Observation of Lüders Band Formation in Hot-Rolled Steel via Digital Image Correlation. Metals, 2020, 10, 530.	1.0	12
62	Relaxation of thermal stresses in dissimilar materials (approach based on stress intensity). International Journal of Solids and Structures, 1997, 34, 3215-3233.	1.3	11
63	Effect of Initial Grain Orientation on Evolution of Deformed Microstructure in Hot Compressed Ni-30Fe Alloy. Materials Transactions, 2004, 45, 2960-2965.	0.4	11
64	Analysis of Buckling and Interfacial Debonding of Galvannealed Coating Layer on Steel Substrates under Applied Tensile Strain. ISIJ International, 2007, 47, 930-934.	0.6	11
65	Bainite Transformation and Resultant Tensile Properties of 0.6%C Low Alloyed Steels with Different Prior Austenite Grain Sizes. ISIJ International, 2021, 61, 582-590.	0.6	11
66	Solution of Thermal Stresses near Apex in Dissimilar Materials by Thermoelastic Theory Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1995, 61, 73-79.	0.2	10
67	Microstructure and Mechanical Properties Formed through Multidirectional Large Strain Caliber Rolling Using Oval Grooves and Square Grooves. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 571-580.	0.2	10
68	Effect of ferrite grain size on the estimated true stress–true strain relationship up to the plastic deformation limit in low carbon ferrite–cementite steels. Journal of Materials Research, 2013, 28, 2171-2179.	1.2	10
69	Three-dimensional microstructure of robust claw of coconut crab, one of the largest terrestrial crustaceans. Materials and Design, 2021, 206, 109765.	3.3	10
70	Effect of Delamination and Grain Refinement on Fracture Energy of Ultrafine-Grained Steel Determined Using an Instrumented Charpy Impact Test. Materials, 2022, 15, 867.	1.3	10
71	Effect of Shear Strain on the Microstructural Evolution of a Low Carbon Steel during Warm Deformation. Materials Transactions, 2010, 51, 27-35.	0.4	9
72	Toughening of Low-Carbon Steel by Ultrafine-Grained Structure. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 1226-1238.	0.2	9

#	Article	IF	CITATIONS
73	Combined Effect of Ausforming and Warm Tempforming on the Strength and Toughness of An Ultra-High Strength Steel. ISIJ International, 2016, 56, 2047-2056.	0.6	9
74	Brittle Fracture Stress of Ultrafine-Grained Low-Carbon Steel. Materials Transactions, 2017, 58, 1505-1508.	0.4	9
75	Determination Method of Weibull Shape Parameter for Evaluation of the Hydrogen Embrittlement Susceptibility of High Strength Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 1082-1090.	0.2	8
76	Novel Rod Rolling Process for Designing Efficiently Ultrafine-Grained Steel Bars Based on Numerical Analysis. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 934-942.	0.2	8
77	Mechanism of crack propagation in 1800 MPa class ultrahigh-strength steel by ultrafine-grained structure (Development of fracture control from microstructure design). Transactions of the JSME (in Japanese), 2015, 81, 15-00281-15-00281.	0.1	8
78	Improvement of toughness and strength balance in low-carbon steel bars with cube texture processed by warm bi-axial rolling. Materials Letters, 2019, 240, 172-175.	1.3	8
79	Optimum Pass Design of Bar Rolling for Producing Bulk Ultrafine-Grained Steel by Numerical Simulation. Materials Science Forum, 2010, 654-656, 1561-1564.	0.3	7
80	Delayed fracture properties of 1.8 GPa-class ultra-high strength fail-safe bolt. Transactions of the JSME (in Japanese), 2018, 84, 17-00493-17-00493.	0.1	7
81	Through-Thickness Microstructure and Strain Distribution in Steel Sheets Rolled in a Large-Diameter Rolling Process. Metals, 2020, 10, 91.	1.0	7
82	Wrought-procedure memory in caliber rolled Mg-Y-Zn alloy containing LPSO phase. Materials Characterization, 2021, 175, 111080.	1.9	7
83	Delaminating Crack Paths in Ultrafine, Elongated Ferritic Steel. ISIJ International, 2013, 53, 2272-2274.	0.6	7
84	Test Production of Ultrafine-grained Steel Plate Using Large-scale Forging Press. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2007, 93, 693-702.	0.1	7
85	Characteristics of Steel Plates Rolled with Shear Deformation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 281-288.	0.1	7
86	ãfªã,µã,ª,¯ãƒ«é‰"ã,'ç‴ã"ãŸæœ–™é–‹ç™º. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 1	107.11115.	. 7
87	Application of Local Approach to Hydrogen Embrittlement Fracture Evaluation of High Strength Steels. Materials Science Forum, 2007, 539-543, 2155-2161.	0.3	6
88	Heterogeneous Distribution of Microstrain Evolved During Tensile Deformation of Polycrystalline Plain Low Carbon Steel. Metals, 2020, 10, 774.	1.0	6
89	Upsizing high-strength fail-safe steel through warm tempforming. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141514.	2.6	6

90Evaluation of Hydrogen Embrittlement Susceptibility of High Strength Steel Based on Local Approach.
Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2004, 22, 125-131.0.16

#	Article	IF	CITATIONS
91	Stress Singularity at the Apex Three Phase Bonded Structure Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 163-170.	0.2	5
92	Effect of Strain on Microstructural Evolution under Warm Deformation in an Ultra-Low Carbon Steel. Materials Transactions, 2009, 50, 34-39.	0.4	5
93	Distributions of Hardness and Strain during Compression in Pure Aluminum Processed with Equal-Channel Angular Pressing and Subsequent Annealing. Materials Transactions, 2009, 50, 27-33.	0.4	5
94	Deformation Mechanism in the Crack-Tip Region of Fine-Grained Magnesium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2475-2480.	1.1	5
95	Effect of Temperature on Stress–Strain Curve in SUS316L Metastable Austenitic Stainless Steel Studied by <i>In Situ</i> Neutron Diffraction Experiments. ISIJ International, 2021, 61, 632-640.	0.6	5
96	Influence of Carbon Content on Toughening in Ultrafine Elongated Grain Structure Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1104-1113.	0.1	5
97	Structural Changes and Mechanical Resistance of Claws and Denticles in Coconut Crabs of Different Sizes. Biology, 2021, 10, 1304.	1.3	5
98	Characteristics of Distribution of Thermal Stresses Near Apex in Dissimilar Materials. Change of Distribution of Thermal Stresses on Vaviation of Singularity of Type log r.DARRLR.rp-1 Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1995, 61, 2461-2468.	0.2	4
99	Cube Texture Formed in Biaxially Rolled Low-Carbon Steel. Materials Science Forum, 2005, 495-497, 387-392.	0.3	4
100	Strain Variations on Rolling Condition in Accumulative Roll-Bonding by Finite Element Analysis. , 2010, , .		4
101	Strength-toughness balance of low-alloy steel by fail-safe design. Mechanical Engineering Letters, 2015, 1, 15-00358-15-00358.	0.2	4
102	Toughening of Low-Alloy Steel by Ultrafine-Grained Structure (Development of Fracture Control) Tj ETQq0 0 0 rg	BT /Overlo	ock ₄ 10 Tf 50 3
103	Criterion of micro-crack initiation in 1800 MPa class fail-safe steel (Development of fracture control) Tj ETQq1 1	0.784314 0.1	rgBT /Overloo
104	Influence of Annealing on Delamination Toughening of Mo-Bearing Medium-Carbon Steel with Ultrafine Elongated Grain Structure Processed by Warm Tempforming. ISIJ International, 2022, 62, 402-404.	0.6	4
105	Preferable Resistance against Hydrogen Embrittlement of Pearlitic Steel Deformed by Caliber Rolling. ISIJ International, 2022, 62, 368-376.	0.6	4
106	Columnar Structure of Claw Denticles in the Coconut Crab, Birgus latro. Minerals (Basel,) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 142 Td (
107	Analysis near Apex in Three-Phase Bonded Material with Arbitrary Wedge Angles under Normal Surface Loading on the Surface. 1st Report, Stress Distribution in Stress Fields with Singularity of Type .GAMMALAMBDA. and log.GAMMA Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers. Part A. 1994. 60. 2286-2292.	0.2	3
108	Effect of Shear Deformation on Deformed Microstructures of Austenitic Grains. Materials Science Forum, 2007, 561-565, 881-884.	0.3	3

#	Article	IF	CITATIONS
109	Fatigue Properties of an Ultrafine-Grained Steel Processed by Warm Tempforming. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2012, 78, 923-927.	0.2	3
110	Acceleration of pearlite transformation in a high-carbon steel by uniaxial compressive stress confirmed by volume measurements. Materials Letters, 2019, 256, 126637.	1.3	3
111	Mechanical Property of Ultrafine Elongated Grain Structure Steel Processed by Warm Tempforming and Its Application to Ultra-High-Strength Bolt. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 127-145.	0.1	3
112	The Neck Growth Model in a Smooth Round Tension and a Circumferentially Notched Tension. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 769-774.	0.1	3
113	Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel. ISIJ International, 2022, 62, 377-388.	0.6	3
114	Basic Characteristics on Distribution of Thermal Stresses near Apex in Dissimilar Materials Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1995, 61, 65-72.	0.2	2
115	Estimations of the True Stress and True Strain until Just before Fracture by the Stepwise Tensile Test and Bridgman Equation for Various Metals and Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2012, 76, 579-586.	0.2	2
116	Estimation of Fracture Toughness of SiC Fiber and Statistical Analysis of Change in Fracture Strength Distribution with Notch Size. Materials Transactions, 2013, 54, 1916-1924.	0.4	2
117	Mechanical Stability of Retained Austenite in Multi-Pass Cr-Ni Weld Metal in an Over-Matching Welded Joint. Materials Transactions, 2018, 59, 380-385.	0.4	2
118	Acceleration of diffusional transformation in a high-carbon steel layer composed of a sandwich-like clad steel sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138217.	2.6	2
119	Analysis for Stress and Displacement Fields near the Apex in Bonded Dissimilar Materials under Surface Traction Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1949-1955.	0.2	1
120	Stress Singularity Near the Apex in Three-Phase Bonded Structure. Effect of the Elastic Property for Intermediate Material on the Order of the Stress Singularity Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1063-1068.	0.2	1
121	Distribution of Singular Stress Intensity at the Apex in Three-Phase Bonded Structure under Normal Loading on Its Surface Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 2709-2716.	0.2	1
122	Stress Singularity Near Apex in Three-Phase Bonded Structure : Effect of Elastic Property of Intermediate Material Order of Stress Singularity. JSME International Journal Series A-Solid Mechanics and Material Engineering, 1995, 38, 163-170.	0.1	1
123	Disappearance Conditions of Stress Singularity Based on Stress Intensity in Dissimilar Materials. 1st Report. Influence of Poisson's Ratio Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1996, 62, 2726-2733.	0.2	1
124	An Estimation of Internal Stresses Around a Dissimilar Ellipse Patch Jointed to on Elliptic Hole Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 1231-1236.	0.2	1
125	Thermal Stress near Tip of Crack Terminating at Interface in Dissimilar Materials Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 60-67.	0.1	1

126 Title is missing!. International Journal of Fracture, 1999, 96, 179-201.

1.1 1

#	Article	IF	CITATIONS
127	Effect of Shear Deformation on Microstructural Evolution of Ni-30Fe Alloy during Hot Deformation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 341-347.	0.2	1
128	Effect of Deformation Mode on Texture of Ultrafine-Grained Low Carbon Steel Processed by Warm Caliber Rolling. Materials Science Forum, 2010, 638-642, 2793-2798.	0.3	1
129	Effect of specimen size on true stress-true strain relationship up to the plastic deformation limit in ultrafine-grained ferrite-cementite steels. Transactions of the JSME (in Japanese), 2017, 83, 16-00315-16-00315.	0.1	1
130	Effect of Layer Construction on Tensile Deformation Behavior of Japanese-Sword-Type Steel Sheet. Journal of the Japan Society for Technology of Plasticity, 2017, 58, 323-329.	0.0	1
131	Strength and Ductility at High-speed Tensile Deformation of Low-carbon Steel with Ultrafine Grains. Materials Transactions, 2017, 58, 1487-1492.	0.4	1
132	Effect of Interface Morphology on Tensile Properties of Carbon Steel Sheet with Sandwich Structure. Steel Research International, 2019, 90, 1900015.	1.0	1
133	Effect of strain and deformation mode on cube texture formation in warm bi-axial rolled low-carbon steel. Finite Elements in Analysis and Design, 2021, 183-184, 103491.	1.7	1
134	Grain-to-Grain Interaction Effect in Polycrystalline Plain Low-Carbon Steel within Elastic Deformation Region. Materials, 2021, 14, 1865.	1.3	1
135	Plastic Instability in Medium-Carbon Tempered Martensite Steel. Materials, 2021, 14, 4609.	1.3	1
136	Development of High Strength and Toughness Magnesium Alloy by Grain Boundary Control. , 2012, , 345-347.		1
137	Conditions of Compressive Residual Stress at the Interface Edge of Dissimilar Materials Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 1999, 17, 120-129.	0.1	1
138	Thermal Stress Field at the Interface Edge in Dissimilar Materials Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 365-375.	0.1	1
139	Timesaving Numerical Method of Evaluating Strength of Wide Plate Weld Joints. Numerical Evaluation of Mechanical Properties of Wide Plate Weld Joints. (1) Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2002, 20, 539-545.	0.1	1
140	Texture and Strain Induced by a Steel Plate by Warm Cross Roll Rolling. Journal of the Japan Society for Technology of Plasticity, 2009, 50, 227-231.	0.0	1
141	Growth analysis and population size estimation of coconut crabs based on a large recapture dataset. Crustacean Research, 2021, 50, 145-150.	0.2	1
142	Analysis near Apex in Three-Phase Bonded Material with Arbitrary Wedge Angles under Normal Surface Loading on the Surface. 2nd Report, Distribution of Displacement in Stress Fields with Singularity of Type .CAMMALAMBDA. and log.CAMMA Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1994, 60, 2293-2297.	0.2	0
143	Suggestion for Disappearance Conditions of Stress Singularity in Dissimilar Materials. Approach Based on Stress Intensity Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1996, 62, 41-48.	0.2	О
144	Relation Between Stress Fields near Apex in Dissimilar Materials under Surface Tractions and Those under Thermal Loading. 2nd Report. Stress Fields with Singularity of Type log .GAMMA Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 1237-1242.	0.2	0

#	Article	IF	CITATIONS
145	Disappearance Conditions of Stress Singularity Based on Stress Intensity in Dissimilar Materials. 2nd Report. In Case of Three-Phase Bonded Structure Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 294-301.	0.2	0
146	Relation Between Stress Fields near Apex in Dissimilar Materials under Surface Tractions and Those under Thermal Loading. 1st Report. Stress Fields with Singularity of Type rp-1 Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 931-938.	0.2	0
147	Prototyping of Ultrafine-Grained Steel Fabrication. Materials and Manufacturing Processes, 2010, 25, 20-25.	2.7	0
148	Investigation on the effects of native defects on electronic structure in MgB2 by first-principles calculation. Computational Materials Science, 2014, 90, 153-156.	1.4	0
149	Improvement of strength, toughness and ductility properties in carbon steel. Transactions of the JSME (in Japanese), 2018, 84, 18-00237-18-00237.	0.1	0
150	Effect of Temperature on Stress–Strain Curve in SUS316L Metastable Austenitic Stainless Steel studied by <i>ln Situ</i> Neutron Diffraction Experiments. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 741-750.	0.1	0
151	150 Numerical analysis of deformation behavior for weld plate joints. The Proceedings of the Computational Mechanics Conference, 2001, 2001.14, 99-100.	0.0	Ο
152	108 Effect of Shear Deformation on Development of Fine-grained Ferrite Structures. The Proceedings of the Computational Mechanics Conference, 2001, 2001.14, 15-16.	0.0	0
153	Development of Ultrafine-Grained Structure through Large Strain-High Z Deformation in a Low Carbon Steel. The Reference Collection of Annual Meeting, 2003, VIII.03.1, 235-236.	0.0	Ο
154	A New Evaluation Method of the Adhesive Strength of Thermal Sprayed Coatings with Interfacial Crack. The Proceedings of the JSME Annual Meeting, 2003, 2003.6, 113-114.	0.0	0
155	Fracture Criterion of Single Fiber-Composite under Thermal and Tensile Loadings Based on Energy Release Rate. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 815-820.	0.1	Ο
156	9008 Microstructure Evolution of Austenite Grain Interiors by Shear-Added Deformation. The Proceedings of the Computational Mechanics Conference, 2005, 2005.18, 781-782.	0.0	0
157	9010 Determination of plastic working limit by circumferentially notched tension test. The Proceedings of the Computational Mechanics Conference, 2005, 2005.18, 785-786.	0.0	Ο
158	306 Effect of Shear Deformation on Microstructure Evolution of of Austenite Grain Interiors. The Proceedings of the Materials and Processing Conference, 2006, 2006.14, 155-156.	0.0	0
159	157 Improvement in Impact Toughness of a 1800 MPa-Class Low-Alloy Steel through the Use of Delamination. The Proceedings of the Computational Mechanics Conference, 2008, 2008.21, 700-701.	0.0	Ο
160	155 Prototyping of Ultrafine-grained Steel Plate by Numerical Simulation. The Proceedings of the Computational Mechanics Conference, 2008, 2008.21, 696-697.	0.0	0
161	1310 Optimum Pass Design of Bar Rolling for Producing Bulk Ultrafine-grained Steel by Numerical Simulation. The Proceedings of Design & Systems Conference, 2009, 2009.19, 167-172.	0.0	0
162	1104 Impact Properties of Low-Carbon Steel with Ultrafme Elongated Grain Structure. The Proceedings of the Computational Mechanics Conference, 2010, 2010.23, 125-126.	0.0	0

#	Article	IF	CITATIONS
163	Strengthening Mg-Al-Zn Alloy by Repetitive Oblique Shear Strain. , 2011, , 211-214.		0
164	OS0614 Gigacycle Fatigue properties of an Ultrafine-Grained Steel Processed by Warm Tempforming. The Proceedings of the Materials and Mechanics Conference, 2011, 2011, _OS0614-1OS0614-2	0.0	0
165	OS19-3-4 Strengthening Mg-Al-Zn Alloys by Severe Plastic Rolling. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS19-3-4	0.0	0
166	OS0109 Strengthening and Toughening of Fail-safe Materials : 1^ <st> Report, Impact toughness of a 800 MPa class low-carbon steel. The Proceedings of the Materials and Mechanics Conference, 2012, 2012, _OS0109-1OS0109-3</st>	0.0	0
167	OS0920 Strengthening and Toughening of Fail-safe Materials : 2^ <nd> Report, Strength - Impact toughness balance of a 1800 MPa class low-alloy steel. The Proceedings of the Materials and Mechanics Conference, 2013, 2013, _OS0920-1OS0920-3</nd>	0.0	0
168	Evolution of microstructure during caliber rolling of AZ31 alloy. , 2013, , 317-322.		0
169	OS0502 Strengthening and Toughening of Fail-safe Materials : 3^ <rd> Report, Anisotropic strength and toughness properties of a 1800 MPa class low-alloy steel. The Proceedings of the Materials and Mechanics Conference, 2014, 2014, _OS0502-1OS0502-3</rd>	0.0	0
170	Development of thin film and its property of magnesium alloy. The Proceedings of the Materials and Processing Conference, 2016, 2016.24, 414.	0.0	0
171	Tensile Properties of Fail-Safe Bolt with an Ultrafine Elongated Grain Structure. The Proceedings of the Materials and Mechanics Conference, 2017, 2017, OS1622.	0.0	0
172	Evolution of strain field in an over-matching welded joint under tension estimated using digital image correlation. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2017, 35, 154-159.	0.1	0
173	True Stress–True Strain Relationship up to the Plastic Deformation Limit in Ferrite–Pearlite Steel at Various Temperatures. ISIJ International, 2022, 62, 361-367.	0.6	0