Karen H Vousden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Live or let die: the cell's response to p53. Nature Reviews Cancer, 2002, 2, 594-604.	28.4	2,906
2	Blinded by the Light: The Growing Complexity of p53. Cell, 2009, 137, 413-431.	28.9	2,717
3	p53 in health and disease. Nature Reviews Molecular Cell Biology, 2007, 8, 275-283.	37.0	2,004
4	TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell, 2006, 126, 107-120.	28.9	1,717
5	Mutant p53 in Cancer: New Functions and Therapeutic Opportunities. Cancer Cell, 2014, 25, 304-317.	16.8	1,226
6	p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology, 2015, 16, 393-405.	37.0	885
7	Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013, 493, 542-546.	27.8	773
8	Serine and one-carbon metabolism in cancer. Nature Reviews Cancer, 2016, 16, 650-662.	28.4	669
9	Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491, 458-462.	27.8	519
10	Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Reports, 2014, 7, 1248-1258.	6.4	468
11	The role of ROS in tumour development and progression. Nature Reviews Cancer, 2022, 22, 280-297.	28.4	453
12	Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 2017, 544, 372-376.	27.8	449
13	Metabolic Regulation by p53 Family Members. Cell Metabolism, 2013, 18, 617-633.	16.2	388
14	p53, cancer and the immune response. Journal of Cell Science, 2020, 133, .	2.0	190
15	Regulation of Mdm2-Directed Degradation by the C Terminus of p53. Molecular and Cellular Biology, 1998, 18, 5690-5698.	2.3	174
16	A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metabolism, 2018, 28, 721-736.e6.	16.2	159
17	Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 2020, 37, 168-182.e4.	16.8	159
18	TIGAR Is Required for Efficient Intestinal Regeneration and Tumorigenesis. Developmental Cell, 2013, 25, 463-477.	7.0	154

KAREN H VOUSDEN

#	Article	IF	CITATIONS
19	CRISPR/Cas9-Mediated <i>Trp53</i> and <i>Brca2</i> Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma. Cancer Research, 2016, 76, 6118-6129.	0.9	145
20	The role of ubiquitin modification in the regulation of p53. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 137-149.	4.1	138
21	Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nature Communications, 2021, 12, 366.	12.8	138
22	Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell Metabolism, 2019, 30, 720-734.e5.	16.2	135
23	Control of metabolism by p53 – Cancer and beyond. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 32-42.	7.4	133
24	Serine one-carbon catabolism with formate overflow. Science Advances, 2016, 2, e1601273.	10.3	128
25	Interaction of p53 with the CCT Complex Promotes Protein Folding and Wild-Type p53 Activity. Molecular Cell, 2013, 50, 805-817.	9.7	121
26	Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discovery, 2019, 9, 1268-1287.	9.4	119
27	Regulation of Cellular Metabolism and Hypoxia by p53. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026146.	6.2	114
28	Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Reports, 2020, 30, 481-496.e6.	6.4	111
29	Dietary Approaches to Cancer Therapy. Cancer Cell, 2020, 37, 767-785.	16.8	105
30	TIGAR, TIGAR, burning bright. Cancer & Metabolism, 2014, 2, 1.	5.0	92
31	Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine. Genes and Development, 2016, 30, 52-63.	5.9	87
32	The ERBB network facilitates KRAS-driven lung tumorigenesis. Science Translational Medicine, 2018, 10,	12.4	82
33	Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation. Nature Communications, 2021, 12, 1209.	12.8	76
34	p53-mediated adaptation to serine starvation is retained by a common tumour-derived mutant. Cancer & Metabolism, 2018, 6, 18.	5.0	36
35	iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems. Cell Cycle, 2014, 13, 220-226.	2.6	34
36	Mutant p53 in cell-cell interactions. Genes and Development, 2021, 35, 433-448.	5.9	26

Karen H Vousden

#	Article	IF	CITATIONS
37	Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo. Scientific Reports, 2017, 7, 1837.	3.3	19
38	The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nature Communications, 2021, 12, 6176.	12.8	19
39	Taking up the reins of power: metabolic functions of p53. Journal of Molecular Cell Biology, 2019, 11, 610-614.	3.3	15
40	PHGDH is required for germinal center formation and is a therapeutic target in MYC-driven lymphoma. Journal of Clinical Investigation, 2022, 132, .	8.2	14
41	p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl4. Cell Death and Differentiation, 2022, 29, 514-526.	11.2	13
42	iRFP Is a Real Time Marker for Transformation Based Assays in High Content Screening. PLoS ONE, 2014, 9, e98399.	2.5	6
43	Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice. Genes and Development, 2021, 35, 117-132.	5.9	6
44	A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Science Signaling, 2022, 15, eabd9099.	3.6	4
45	Finding clues in the p53 maze: an interview with Karen Vousden. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	0