Andreia Carina Turchetto-Zolet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920091/publications.pdf

Version: 2024-02-01

39 papers

1,499 citations

394421 19 h-index 37 g-index

39 all docs 39 docs citations

39 times ranked 2474 citing authors

#	Article	IF	CITATIONS
1	Phylogeographical patterns shed light on evolutionary process in <scp>S</scp> outh <scp>A</scp> merica. Molecular Ecology, 2013, 22, 1193-1213.	3.9	362
2	Heavy metalâ€essociated isoprenylated plant protein (<scp>HIPP</scp>): characterization of a family of proteins exclusive to plants. FEBS Journal, 2013, 280, 1604-1616.	4.7	187
3	Biosynthesis of Triacylglycerols (TAGs) in Plants and algae. International Journal of Plant Biology, 2011, 2, e10.	2.6	81
4	Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhiziinfection. BMC Plant Biology, 2014, 14, 236.	3.6	79
5	The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics, 2009, 281, 87-97.	2.1	68
6	Identifying Conserved and Novel MicroRNAs in Developing Seeds of Brassica napus Using Deep Sequencing. PLoS ONE, 2012, 7, e50663.	2.5	61
7	Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Molecular Phylogenetics and Evolution, 2016, 96, 55-69.	2.7	51
8	Genome-wide analysis of the Glycerol-3-Phosphate Acyltransferase (GPAT) gene family reveals the evolution and diversification of plant GPATs. Genetics and Molecular Biology, 2018, 41, 355-370.	1.3	48
9	Environmental drivers of diversity in Subtropical Highland Grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 360-368.	2.7	47
10	Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genetics and Molecular Biology, 2012, 35, 233-246.	1.3	42
11	Phylogeography and ecological niche modelling in <i>Eugenia uniflora</i> (Myrtaceae) suggest distinct vegetational responses to climate change between the southern and the northern Atlantic Forest. Botanical Journal of the Linnean Society, 2016, 182, 670-688.	1.6	41
12	Large-scale phylogeography of the disjunct Neotropical tree species Schizolobium parahyba (Fabaceae-Caesalpinioideae). Molecular Phylogenetics and Evolution, 2012, 65, 174-182.	2.7	40
13	De novo assembly and characterization of leaf and floral transcriptomes of the hybridizing bromeliad species (<i>Pitcairnia</i> spp.) adapted to Neotropical Inselbergs. Molecular Ecology Resources, 2016, 16, 1012-1022.	4.8	37
14	Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genetics and Molecular Biology, 2016, 39, 524-538.	1.3	34
15	De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway. Plant Science, 2014, 229, 238-246.	3.6	33
16	New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants. Genomics, 2014, 103, 380-387.	2.9	30
17	Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Progress in Lipid Research, 2019, 73, 46-64.	11.6	28
18	Revisiting the Non-Animal Peroxidase Superfamily. Trends in Plant Science, 2015, 20, 807-813.	8.8	27

#	Article	IF	Citations
19	Fumarate reductase superfamily: A diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways. Mitochondrion, 2017, 34, 56-66.	3.4	25
20	Genome-wide analysis and evolution of plant thaumatin-like proteins: a focus on the origin and diversification of osmotins. Molecular Genetics and Genomics, 2019, 294, 1137-1157.	2.1	19
21	Molecular evolution and diversification of plant cysteine proteinase inhibitors: New insights after the poplar genome. Molecular Phylogenetics and Evolution, 2008, 49, 349-355.	2.7	18
22	Analysis of castor bean ribosome-inactivating proteins and their gene expression during seed development. Genetics and Molecular Biology, 2013, 36, 74-86.	1.3	18
23	Uncovering legumain genes in rice. Plant Science, 2014, 215-216, 100-109.	3.6	18
24	Molecular evolution and diversification of the GRF transcription factor family. Genetics and Molecular Biology, 2020, 43, 20200080.	1.3	15
25	Going Forward and Back: The Complex Evolutionary History of the GPx. Biology, 2021, 10, 1165.	2.8	15
26	Phylogenetic analysis of the genusHexachlamys (Myrtaceae) based on plastid and nuclear DNA sequences and their taxonomic implications. Botanical Journal of the Linnean Society, 2013, 172, 532-543.	1.6	12
27	Comparative phylogeography of two freeâ€living cosmopolitan cyanobacteria: Insights on biogeographic and latitudinal distribution. Journal of Biogeography, 2020, 47, 1106-1118.	3.0	8
28	Transcriptomics analysis of Psidium cattleyanum Sabine (Myrtaceae) unveil potential genes involved in fruit pigmentation. Genetics and Molecular Biology, 2020, 43, e20190255.	1.3	8
29	Glutamine synthetase evolutionary history revisited: Tracing back beyond the Last Universal Common Ancestor. Evolution; International Journal of Organic Evolution, 2022, 76, 605-622.	2.3	8
30	Characterization and expression analysis of P5CS (Î"1-pyrroline-5-carboxylate synthase) gene in two distinct populations of the Atlantic Forest native species Eugenia uniflora L Molecular Biology Reports, 2020, 47, 1033-1043.	2.3	7
31	The Mitochondrial Iron-Regulated (MIR) gene is Oryza genus specific and evolved before speciation within the Oryza sativa complex. Planta, 2020, 251, 94.	3.2	7
32	Advances and perspectives on the evolutionary history and diversification of Neotropical Myrteae (Myrtaceae). Botanical Journal of the Linnean Society, 2022, 199, 173-195.	1.6	5
33	Perspectives in Myrtaceae evolution from plastomes and nuclear phylogenies. Genetics and Molecular Biology, 2022, 45, e20210191.	1.3	4
34	MAEWEST Expression in Flower Development of Two Petunia Species. International Journal of Molecular Sciences, 2013, 14, 13796-13807.	4.1	3
35	The evolutionary history of the E2F and DEL genes in Viridiplantae. Molecular Phylogenetics and Evolution, 2016, 99, 225-234.	2.7	3
36	The Role of Co-Deleted Genes in Neurofibromatosis Type 1 Microdeletions: An Evolutive Approach. Genes, 2019, 10, 839.	2.4	3

Andreia Carina

#	Article	IF	CITATIONS
37	Drivers of exceptional Neotropical biodiversity: an updated view. Botanical Journal of the Linnean Society, 2022, 199, 1-7.	1.6	3
38	Population structure and signals of local adaptation in <i>Eugenia uniflora</i> (Myrtaceae), a widely distributed species in the Atlantic Forest. Botanical Journal of the Linnean Society, 2023, 201, 100-113.	1.6	3
39	Haplotype analysis and origin of the most common pathogenic mutation causing Mucolipidosis II and III alpha/beta in Brazilian patients. Gene Reports, 2020, 19, 100645.	0.8	1