
Chun-Liang Yeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920059/publications.pdf Version: 2024-02-01

CHUN-LIANC YEH

#	Article	IF	CITATIONS
1	Formation of Ti3AlC2/Al2O3 and Ti2AlC/Al2O3 composites by combustion synthesis in Ti–Al–C–TiO2 systems. Journal of Alloys and Compounds, 2010, 494, 132-136.	2.8	56
2	Formation of MAX solid solutions (Ti,V)2AlC and (Cr,V)2AlC with Al2O3 addition by SHS involving aluminothermic reduction. Ceramics International, 2013, 39, 7537-7544.	2.3	39
3	An experimental study on self-propagating high-temperature synthesis in the Ta–B4C system. Journal of Alloys and Compounds, 2009, 478, 163-167.	2.8	37
4	A comparative study on combustion synthesis of Ta–B compounds. Ceramics International, 2011, 37, 1569-1573.	2.3	34
5	Formation of TiAl–Ti2AlC in situ composites by combustion synthesis. Intermetallics, 2009, 17, 169-173.	1.8	33
6	Preparation of tungsten borides by combustion synthesis involving borothermic reduction of WO3. Ceramics International, 2011, 37, 2597-2601.	2.3	28
7	In situ formation of TiB 2 /TiC and TiB 2 /TiN reinforced NiAl by self-propagating combustion synthesis. Vacuum, 2018, 151, 185-188.	1.6	26
8	Effects of TiC addition on formation of Ti2SnC by self-propagating combustion of Ti–Sn–C–TiC powder compacts. Journal of Alloys and Compounds, 2010, 502, 461-465.	2.8	21
9	Formation of chromium borides by combustion synthesis involving borothermic and aluminothermic reduction of Cr2O3. Ceramics International, 2012, 38, 5691-5697.	2.3	20
10	Effects of α-Si3N4 and AlN addition on formation of α-SiAlON by combustion synthesis. Journal of Alloys and Compounds, 2011, 509, 529-534.	2.8	17
11	Combustion synthesis of (Ti1â^'xNbx)2AlC solid solutions from elemental and Nb2O5/Al4C3-containing powder compacts. Ceramics International, 2011, 37, 3089-3094.	2.3	17
12	Effects of Al and Al4C3 contents on combustion synthesis of Cr2AlC from Cr2O3–Al–Al4C3 powder compacts. Journal of Alloys and Compounds, 2011, 509, 651-655.	2.8	16
13	Formation of Ti 5 Si 3 and V 5 Si 3 by self-propagating high-temperature synthesis and evaluation of combustion wave kinetics. Journal of Alloys and Compounds, 2017, 714, 567-571.	2.8	16
14	Effects of sample stoichiometry of thermite-based SHS reactions on formation of Nb–Al intermetallics. Journal of Alloys and Compounds, 2009, 485, 280-284.	2.8	15
15	Fabrication of WSi2–Al2O3 and W5Si3–Al2O3 composites by combustion synthesis involving thermite reduction. Ceramics International, 2016, 42, 14006-14010.	2.3	13
16	Formation of Ti ₂ AlN by Solid–Gas Combustion Synthesis with AlN―and TiNâ€Điluted Samples in Nitrogen. International Journal of Applied Ceramic Technology, 2010, 7, 730-737.	1.1	11
17	Effects of Boron Source on Combustion Synthesis of Chromium Boride/Al ₂ O ₃ Composites. Materials and Manufacturing Processes, 2013, 28, 1335-1339.	2.7	11
18	Preparation of TaB/TaB 2 /mullite composites by combustion synthesis involving aluminothermic reduction of oxide precursors. Journal of Alloys and Compounds, 2014, 615, 734-739.	2.8	11

CHUN-LIANG YEH

#	Article	IF	CITATIONS
19	Experimental and Numerical Studies on Self-Propagating High-Temperature Synthesis of Ta5Si3 Intermetallics. Metals, 2015, 5, 1580-1590.	1.0	11
20	Effects of Al content on formation of TaC, Ta2C, and Ta2AlC by combustion synthesis with aluminothermic reactions. Ceramics International, 2017, 43, 15659-15665.	2.3	11
21	Synthesis of TiB2–Al2O3–FeAl composites via self-sustaining combustion with Fe2O3/TiO2-based thermite mixtures. Ceramics International, 2018, 44, 16030-16034.	2.3	11
22	Combustion Synthesis of NbB2–Spinel MgAl2O4 Composites from MgO-Added Thermite-Based Reactants with Excess Boron. Crystals, 2020, 10, 210.	1.0	11
23	Preparation of ZrB2–SiC–Al2O3 composites by SHS method with aluminothermic reduction. Ceramics International, 2021, 47, 11202-11208.	2.3	10
24	Combustion synthesis of TiN–Ti silicide and TiN–Si3N4 composites from Ti–Si3N4 powder compacts in Ar and N2. Journal of Alloys and Compounds, 2009, 486, 853-858.	2.8	9
25	Fabrication of MoSi2–MgAl2O4 in situ composites by combustion synthesis involving intermetallic and aluminothermic reactions. Vacuum, 2019, 167, 207-213.	1.6	9
26	Formation of Mo5Si3/Mo3Si–MgAl2O4 Composites via Self-Propagating High-Temperature Synthesis. Molecules, 2020, 25, 83.	1.7	9
27	In situ formation of Zr2Al3C4/Al2O3 composites by combustion synthesis with PTFE and thermal activations. Transactions of Nonferrous Metals Society of China, 2018, 28, 2011-2016.	1.7	8
28	Effects of excess boron on combustion synthesis of alumina–tantalum boride composites. Ceramics International, 2014, 40, 2593-2598.	2.3	7
29	Combustion synthesis of Ti2(Al,Sn)C solid solutions from Ti/Al/Sn/C samples with addition of TiC and Al4C3. Ceramics International, 2015, 41, 6263-6268.	2.3	7
30	Studies of Ta, Al, and Carbon Sources on Combustion Synthesis of Alumina–Tantalum Carbide Composites. Materials and Manufacturing Processes, 2015, 30, 298-302.	2.7	7
31	Formation of Ti5Si3 by Combustion Synthesis in a Self-Propagating Mode: Experimental Study and Numerical Simulation. High Temperature Materials and Processes, 2016, 35, 769-774.	0.6	7
32	Effects of excess boron and B 4 C addition on combustion synthesis of NbB 2 /mullite composites. Ceramics International, 2016, 42, 3631-3637.	2.3	7
33	Effects of PTFE activation and excess Al on combustion synthesis of SiC– and ZrC–Al2O3 composites. Vacuum, 2018, 154, 186-189.	1.6	7
34	Adaptive tracking control based on neural approximation for the yaw motion of a small-scale unmanned helicopter. International Journal of Advanced Robotic Systems, 2019, 16, 172988141982827.	1.3	7
35	Aluminothermic reduction of ZrSiO4 in the presence of carbon for in situ formation of Zr-based silicides/carbides composites. Journal of Alloys and Compounds, 2019, 775, 360-365.	2.8	7
36	Combustion synthesis of FeAlâ^'Al2O3 composites with TiB2 and TiC additions via metallothermic reduction of Fe2O3 and TiO2. Transactions of Nonferrous Metals Society of China, 2020, 30, 2510-2517.	1.7	7

CHUN-LIANG YEH

#	Article	IF	CITATIONS
37	Synthesis of FeSi-Al2O3 Composites by Autowave Combustion with Metallothermic Reduction. Metals, 2021, 11, 258.	1.0	7
38	Effects of Fe/Si Stoichiometry on Formation of Fe3Si/FeSi-Al2O3 Composites by Aluminothermic Combustion Synthesis. Metals, 2021, 11, 1709.	1.0	7
39	Effects of co-reduction of Cr2O3 and V2O5 on combustion synthesis of (Cr1â^'xVx)2AlC/Al2O3 solid solution composites. Journal of Alloys and Compounds, 2014, 608, 292-296.	2.8	6
40	Combustion Synthesis of MoSi2-Al2O3 Composites from Thermite-Based Reagents. Metals, 2016, 6, 235.	1.0	6
41	Intermetallic/Ceramic Composites Synthesized from Al–Ni–Ti Combustion with B4C Addition. Metals, 2020, 10, 873.	1.0	6
42	Combustion Synthesis of UHTC Composites from Ti–B4C Solid State Reaction with Addition of VIb Transition Metals. Coatings, 2017, 7, 73.	1.2	5
43	In Situ Formation of TiB2/Al2O3-Reinforced Fe3Al by Combustion Synthesis with Thermite Reduction. Metals, 2018, 8, 288.	1.0	5
44	IGNITION AND COMBUSTION OF Mg-COATED AND UNCOATED BORON PARTICLES. International Journal of Energetic Materials and Chemical Propulsion, 1994, 3, 327-341.	0.2	5
45	Use of Al4C3 for fabrication of alumina–niobium carbide composites by combustion synthesis. Journal of Alloys and Compounds, 2014, 589, 132-136.	2.8	4
46	A combustion route to synthesize Mo5SiB2–Al2O3 composites. Vacuum, 2019, 163, 288-291.	1.6	4
47	Combustion Synthesis of FeAl-based Composites from Thermitic and Intermetallic Reactions. Crystals, 2019, 9, 127.	1.0	4
48	Metallothermic Reduction of MoO3 on Combustion Synthesis of Molybdenum Silicides/MgAl2O4 Composites. Materials, 2021, 14, 4800.	1.3	4
49	Fabrication of FeSi/α-FeSi2–based composites by metallothermically assisted combustion synthesis. Journal of the Australian Ceramic Society, 2021, 57, 1415-1424.	1.1	4
50	THERMITE-BASED COMBUSTION SYNTHESIS OF NIOBIUM SILICIDES/Al2O3 COMPOSITES. High Temperature Material Processes, 2012, 16, 57-69.	0.2	4
51	Combustion Synthesis of (Ti,V) ₂ AlC Solid Solutions. Advanced Materials Research, 2014, 909, 19-23.	0.3	3
52	Effects of Ti and TiO ₂ on Combustion Synthesis of (Ti,V) ₂ AlC/Al ₂ O ₃ Solid Solution Composites. Materials and Manufacturing Processes, 2015, 30, 292-297.	2.7	3
53	Combustion Synthesis of MAX Phase Solid Solution Ti ₃ (Al,Sn)C ₂ . Nano Hybrids and Composites, 2017, 16, 73-76.	0.8	3
54	Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 Composites by Low-Exotherm Thermitic Combustion with PTFE Activation. Journal of Composites Science, 2022, 6, 111.	1.4	3

CHUN-LIANG YEH

#	Article	IF	CITATIONS
55	Formation of silicide/spinel ceramic composites via Al- and Mg-based thermitic combustion synthesis. Journal of the Australian Ceramic Society, 2022, 58, 1275-1282.	1.1	3
56	Facile and rapid synthesis of Mo5SiB2-based ceramics from solid-phase combustion reaction with reducing stages. Journal of Alloys and Compounds, 2019, 805, 740-746.	2.8	2
57	Fabrication of Mo5SiB2-based composites by combustion synthesis involving aluminothermic reduction of MoO3. Ceramics International, 2019, 45, 5355-5360.	2.3	2
58	Formation of zirconium silicide–Al2O3 composites from PTFE-assisted ZrO2/Si/Al combustion synthesis. Vacuum, 2021, 184, 109877.	1.6	2
59	HIGH-TEMPERATURE COMBUSTION SYNTHESIS OF TANTALUM BORIDE/NITRIDE COMPOSITES. High Temperature Material Processes, 2012, 16, 45-55.	0.2	2
60	Boron source and extra amount on formation of WB2–Al2O3 composites by combustion synthesis. Vacuum, 2020, 179, 109482.	1.6	1
61	EXPERIMENTAL STUDY OF FLAME-SPREADING PROCESSES OVER Mg/PTFE/Mg THIN FOILS. International Journal of Energetic Materials and Chemical Propulsion, 1997, 4, 465-475.	0.2	1
62	Effects of pre-added and <i>in situ</i> formed SiO ₂ on combustion synthesis of TiB ₂ /mullite composites. Materials Research Innovations, 2015, 19, S8-255-S8-259.	1.0	0
63	COMBUSTION SYNTHESIS OF ADVANCED CERAMICS, INTERMETALLICS, AND COMPOSITES. International Journal of Energetic Materials and Chemical Propulsion, 2011, 10, 365-395.	0.2	0