Mihailo Martinović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920045/publications.pdf

Version: 2024-02-01

54 papers

3,885 citations

28 h-index 53 g-index

56 all docs 56
docs citations

56 times ranked 1879 citing authors

#	Article	IF	CITATIONS
1	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	8.1	521
2	The Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A1.	5.1	514
3	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	27.8	401
4	Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 2019, 576, 228-231.	27.8	311
5	Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. Journal of Geophysical Research, 2005, 110 , .	3.3	308
6	SOLAR WIND TURBULENT SPECTRUM AT PLASMA KINETIC SCALES. Astrophysical Journal, 2012, 760, 121.	4.5	156
7	The Solar Probe Cup on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 43.	7.7	154
8	Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind?. Solar Physics, 2009, 256, 463-474.	2.5	129
9	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
10	ON SPECTRAL BREAKS IN THE POWER SPECTRA OF MAGNETIC FLUCTUATIONS IN FAST SOLAR WIND BETWEEN 0.3 AND 0.9 AU. Astrophysical Journal, 2012, 749, 102.	4.5	99
11	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	7.7	99
12	The Solar Orbiter Radio and Plasma Waves (RPW) instrument. Astronomy and Astrophysics, 2020, 642, A12.	5.1	80
13	The Solar Probe Plus Radio Frequency Spectrometer: Measurement requirements, analog design, and digital signal processing. Journal of Geophysical Research: Space Physics, 2017, 122, 2836-2854.	2.4	74
14	Scattering of strahl electrons in the solar wind between 0.3 and 1 au: Helios observations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3404-3414.	4.4	58
15	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	7.7	56
16	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> . Astrophysical Journal, Supplement Series, 2020, 246, 62.	7.7	55
17	Quasi-thermal noise in space plasma: "kappa―distributions. Physics of Plasmas, 2009, 16, .	1.9	54
18	A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun. Astrophysical Journal, 2017, 849, 126.	4.5	47

#	Article	IF	Citations
19	Determination of accurate solar wind electron parameters using particle detectors and radio wave receivers. Journal of Geophysical Research, 2001, 106, 21701-21717.	3.3	46
20	Solar wind electron parameters from quasi-thermal noise spectroscopy and comparison with other measurements on Ulysses. Journal of Geophysical Research, 1995, 100, 19881.	3.3	40
21	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
22	Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind. Advances in Space Research, 2005, 35, 2141-2146.	2.6	36
23	Electric field measurement in gas discharges using stark shifts of He I lines and their forbidden counterparts. Journal Physics D: Applied Physics, 2015, 48, 205201.	2.8	33
24	Electron heat flux in the near-Sun environment. Astronomy and Astrophysics, 2021, 650, A15.	5.1	32
25	Turbulence Characteristics of Switchback and Nonswitchback Intervals Observed byÂParker Solar Probe. Astrophysical Journal Letters, 2020, 904, L30.	8.3	31
26	Proton core behaviour inside magnetic field switchbacks. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5524-5531.	4.4	29
27	Alfv $\tilde{\mathbb{A}}$ ©nic versus non-Alfv $\tilde{\mathbb{A}}$ ©nic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	5.1	29
28	Solar wind density intercomparisons on the WIND spacecraft using WAVES and SWE experiments. Geophysical Research Letters, 1998, 25, 1265-1268.	4.0	28
29	On the antenna calibration of space radio instruments using the galactic background: General formulas and application to STEREO/WAVES. Radio Science, $2011,46,\ldots$	1.6	28
30	Density fluctuations associated with turbulence and waves. Astronomy and Astrophysics, 2021, 656, A19.	5.1	24
31	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	7.7	23
32	Multiscale Solar Wind Turbulence Properties inside and near Switchbacks Measured by the Parker Solar Probe. Astrophysical Journal, 2021, 912, 28.	4.5	23
33	Inferred Linear Stability of Parker Solar Probe Observations Using One- and Two-component Proton Distributions. Astrophysical Journal, 2021, 909, 7.	4.5	22
34	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU. Astronomy and Astrophysics, 2021, 650, A8.	5.1	20
35	Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver. Solar Physics, 2013, 286, 549-559.	2.5	19
36	Linear Stability in the Inner Heliosphere: Helios Re-evaluated. Astrophysical Journal, 2019, 887, 234.	4.5	16

#	Article	IF	CITATIONS
37	Wind-Ulysses in-situ thermal noise measurements of solar wind electron density and core temperature at solar maximum and minimum. Advances in Space Research, 2003, 32, 491-496.	2.6	15
38	Radial Evolution of Stochastic Heating in Low-Î ² Solar Wind. Astrophysical Journal, 2019, 879, 43.	4.5	14
39	Quasiâ€thermal noise measurements on STEREO: Kinetic temperature deduction using electron shot noise model. Journal of Geophysical Research: Space Physics, 2016, 121, 129-139.	2.4	12
40	Wave-particle energy transfer directly observed in an ion cyclotron wave. Astronomy and Astrophysics, 2021, 650, A10.	5.1	12
41	Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A14.	5.1	12
42	Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind. Astronomy and Astrophysics, 2021, 656, A34.	5.1	12
43	Measurements of stray antenna capacitance in the STEREO/WAVES instrument: Comparison of the measured voltage spectrum with an antenna electron shot noise model. Radio Science, 2010, 45, n/a-n/a.	1.6	11
44	The physics and detection of nanodust in the solar system. Plasma Physics and Controlled Fusion, 2015, 57, 014015.	2.1	11
45	Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy. Advances in Space Research, 2005, 36, 1471-1473.	2.6	10
46	First observations and performance of the RPW instrument on board the Solar Orbiter mission. Astronomy and Astrophysics, 2021, 656, A41.	5.1	9
47	The Interplay Between Ambipolar Electric Field and Coulomb Collisions in the Solar Wind Acceleration Region. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028864.	2.4	7
48	Ion-driven Instabilities in the Inner Heliosphere. I. Statistical Trends. Astrophysical Journal, 2021, 923, 116.	4.5	6
49	Electrostatic thermal noise in a weakly ionized collisional plasma. Radio Science, 2017, 52, 70-77.	1.6	5
50	How Alfvén waves energize the solar wind: heat versus work. Journal of Plasma Physics, 2021, 87, .	2.1	5
51	Solar Wind Electron Parameters Determination on Wind Spacecraft Using Quasiâ€Thermal Noise Spectroscopy. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028113.	2.4	3
52	Plasma Parameters From Quasiâ€Thermal Noise Observed by Parker Solar Probe: A New Model for the Antenna Response. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
53	Subluminal electrostatic noise in isotropic space plasmas. General formulas and nonrelativistic thermal limit. Physics of Plasmas, 2021, 28, .	1.9	1
54	Impedance and Voltage Power Spectra of a Monopole Antenna in a Warm Plasma—Derivation and Application to CubeSats. Radio Science, 2020, 55, e2019RS006956.	1.6	0